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1 Introduction

One of the key lessons of intense studies in higher-spin (HS) field theories is the need

to abandon many of the beliefs inherited by years of extraordinary results devoted to

understanding their lower-spin counterparts. For instance, the higher-derivative nature of

the couplings as well as the need of introducing infinitely many HS fields are clear signals

that the standard frameworks are not sufficient. These features naturally surface in String

Theory (ST), where the presence of an infinite tower of massive higher-spin excitations

brings about most of its remarkable properties. Besides being responsible for planar duality,

open-closed duality and modular invariance, the plethora of massive HS particles is what
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makes the high-energy behavior of string amplitudes softer than in any local quantum field

theory. To wit, although its lower-spin truncations are in general non-renormalizable, ST is

believed to be finite. The field-theoretical reason for this difference is the contribution of an

infinite number of massive HS fields to quantum corrections. Moreover, since the massive

HS spectrum becomes massless in the tensionless limit, it has long been conjectured that

ST may describe a broken phase of an underlying HS gauge theory. Therefore, in order to

better understand the quantum properties of ST as well as other of its remarkable features,

it would be important to investigate the dynamics of HS gauge fields and their links to

massive counterparts on more general field-theoretical grounds.

Over the years, finding consistent interactions of HS gauge fields has proven to be

a very challenging task.1 A long-recognized difficulty concerns the inconsistency of the

gravitational minimal couplings in flat space-time [11]. As shown in [12, 13], this problem

can be solved in (anti) de Sitter space-time ((A)dS). There HS gauge invariance, which is

broken when one replaces ordinary partial derivatives by the gravitational covariant ones, is

restored by adding a chain of higher-derivative interactions sized by negative powers of the

cosmological constant. Interestingly, this way of solving the minimal interaction problem

is similar to the one used for massive HS fields in the Stückelberg formulation. More

precisely, one can restore the Stückelberg gauge invariance of the HS fields by adding higher-

derivative interactions sized by inverse powers of the mass.2 This analogy between the roles

of cosmological constant and masses suggests that a systematic study of massive HS theories

in (A)dS can provide new insights on both Vasiliev’s HS gauge theory3 in (A)dS and ST, and

eventually shed some light on their relations. However, although both of them have been

known for many years, extracting their interaction vertices remains a very difficult program

that only recently have been pushed forward by some new but yet not conclusive steps. The

present work aims to constructing all consistent cubic interactions of totally symmetric HS

relying on the Noether procedure. The cubic results are expected to be further constrained

by the higher-order consistency leading eventually to ST and Vasiliev’s system and possibly

to other consistent theories. We hope our work to be a first step towards HS systematics.

Let us mention as well that the construction of consistent interacting massive HS theories

is also relevent from a phenomenological prespective. Indeed, they provide an effective

description for hadronic resonances in certain regimes.

Free massive HS particles can be described by the Fierz system [18] consisting of

dynamical field equations together with the traceless and transverse (TT) constraints.

The latter constraints guarantee the propagation of the correct number of physical de-

grees of freedom (DoF). The Lagrangian reproducing the Fierz system was first obtained

in [19, 20] in flat space, and further studied in [21–40] in flat or (A)dS background. In dS,

the mass spectrum in the unitary region presents a discrete series of mass values, called

partially-massless points [21, 41–56], for which the fields acquire gauge symmetries and

the corresponding representations become shorter. It is worth noticing that the interac-

1For recent reviews on the subject, see e.g. the proceeding [1] (which includes [2–6]) and [7–10].
2See e.g. [14] for the EM interaction of spin 2 and [15] for the gravitational interaction of spin 3.
3Vasiliev’s equation provides at present the only known fully non-linear consistent description of an

infinite number of HS gauge fields of all spins [16, 17].
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tions of these partially-massless fields might play some important role in the inflationary

cosmology.

As noticed some time ago, the introduction of interactions for massive HS fields might

either spoil the TT constraints, thus leading to the appearance of unphysical DoF [57], or

violate causality [58–60]. See e.g. [14, 15, 61–74] for some recent works on the consistency

of the electromagnetic (EM) and gravitational couplings to massive HS fields.4 It is worth

noticing that, as shown for spin 2 in [76, 77] and for arbitrary spins in [78], ST provides a

solution for the case of constant EM background. See also [79, 80] for an analysis of HS

interactions in the open bosonic string and [81–85] for studies on scattering amplitudes of

HS states in superstring and heterotic string theories. Other works on cubic interactions

of massive HS fields in (A)dS can be found in [86, 87].

Traceless and transverse part of the interactions. The aforementioned difficulties

in finding consistent interactions manifest themselves only at the full off-shell level,5 while

they can be circumvented restricting the attention to the physical DoF. Indeed, relying on

the light-cone formalism, Metsaev constructed all consistent cubic interactions involving

massive and massless HS fields in flat space-time [88, 89]. In this approach, what is left is to

find the complete expressions associated with those vertices. Starting from the TT parts of

the interactions, that can be viewed as the covariant versions of Metsaev’s lightcone vertices,

the corresponding complete forms within the Fronsdal setting were obtained recently in [80,

90]. Moreover, the computation of (tree-level) correlation functions does not require the

full vertices but only their TT parts.6 Therefore, although they ought to be completed,

the TT parts of the vertices are also interesting in their own right. Motivated by this

observation, recently the TT parts of the cubic interactions of massless HS fields in (A)dS

were identified in [92].7 In the present paper, we extend this approach to the cases of

massive and partially-massless fields in (A)dS.

Radial reduction with delta function. A way of obtaining massive theories is via

dimensional reduction of a (d + 1)-dimensional massless theory [53, 94–97].8 However,

when applied to cubic interactions, the conventional Kaluza-Klein (KK) reduction method

imposes some restrictions. In the case of flat-space interactions, these rule out the possibil-

ity of reproducing most of the known examples of massive HS interactions, notably those

appearing in ST [79, 80]. Notice that, after all, the consistency of the KK reduction does

not hold if one considers only a part of the KK spectrum.9 In this paper we avoid this

4See also [75] for the study of EM interactions of partially-massless spin 2 fields.
5By off-shell we mean the entire Lagrangian including traces and divergences of fields, as opposed to its

TT part.
6See e.g. [80, 91] for the analysis of higher-order interactions of massless particles in flat space.
7See [93] for the frame-like approach to the same problem.
8The Singh-Hagen massive HS Lagrangian [19, 20] can be obtained through dimensional reduction of

Fronsdal’s massless one [98, 99] after gauge fixing. However, the gauge fixing procedure is non-trivial if one

starts with the Fronsdal action and a more convenient one can be found in [100]. Let us also mention that

the analysis in [53] is carried out within the unconstrained setting of [101, 102] bypassing all the problems

related to the constrained Fronsdal formulation. Furthermore, let us mention that similar results can be

also recovered starting from the tractor approach [38, 54, 103].
9The only consistent truncation is the massless one which is not the main goal of the present paper.
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restriction working within the ambient-space formulation of (A)dS fields [22, 24, 104–106]

with an insertion of a delta function of the radial coordinate into the (d + 1)-dimensional

action.10 This means that we are actually dealing with a d-dimensional action but in a

(d + 1)-dimensional representation. On the other hand, the gauge consistency requires

particular attention in treating the total-derivative terms that, because of the insertion of

the delta function, do not vanish any longer.

Taking into account the aforementioned subtleties, we translate the consistency condi-

tion for the vertices into a set of differential equations. The latter can be explicitly solved

for given s1−s2−s3 couplings and the 2−2−2 and 3−3−2 examples are provided in detail

for all different combinations of the masses. In the following we summarize our results for

arbitrary spins. Let us stress that our analysis is independent of space-time dimensional-

ity, however subtleties arise in three and four dimensions due to the appearance of some

identities. More precisely, in three dimensions our analysis is not complete while in four

dimensions some parts of the vertices can vanish identically.11

Massive and massless interactions. Cubic interactions involving massive and massless

fields can be expressed in a compact form via generating functions of all consistent

couplings. Depending on the number of massless fields entering the latter, the corre-

sponding vertices are given by functions K of subsets of the following building blocks:

Ỹi = ∂Ui
· ∂Xi+1 + αi ∂Ui

· ∂X ,

Zi = ∂Ui+1 · ∂Ui−1 ,

G̃ = (∂U1 · ∂X2 + β1 ∂U1 · ∂X) ∂U2 · ∂U3 + (∂U2 · ∂X3 + β2 ∂U2 · ∂X) ∂U3 · ∂U1

+(∂U3 · ∂X1 + β3 ∂U3 · ∂X) ∂U1 · ∂U2 ,

H̃i = ∂Xi+1· ∂Xi−1 ∂Ui−1· ∂Ui+1 − ∂Xi+1· ∂Ui−1 ∂Xi−1· ∂Ui+1 , (1.1)

that are differential operators acting on ambient-space HS fields

Φ(Xi, Ui) =
∞
∑

s=0

1

s!
Φ(s)

M1...Ms
(Xi)U

M1
i · · ·UMs

i . (1.2)

Here ∂XM = ∂XM
1

+ ∂XM
2

+ ∂XM
3

denotes total derivatives, while the αi’s and the βi’s

are parameterized as

α1 = α , α2 = − 1

α+ 1
, α3 = −α+ 1

α
,

β1 = β , β2 = −β + 1

α+ 1
, β3 = −α− β

α
. (1.3)

Finally, the TT parts of the cubic interactions for massive and massless HS fields in

(A)dS can be expressed as
∫

dd+1X δ
(

√
ǫX2 − L

)

K Φ(X1, U1) Φ(X2, U2) Φ(X3, U3)
∣

∣

∣Xi=X

Ui=0

, (1.4)

10A similar delta-function calculus has been used in the framework of 2T-physics (see [107] and references

therein).
11For instance, in four dimensions the Gauss-Bonnet identity allows to rewrite the coupling of three

partially-massless spin 2 fields with at most four derivatives as a coupling with at most two derivatives.
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where ǫ is a sign, positive for dS and negative for AdS. The flat-space interactions

can be smoothly recovered as limits of the AdS ones.

Partially-massless interactions. Although at present we are not able to derive a gen-

erating function encompassing all possible interactions of partially-massless fields

(which are unitary only in dS), this can be done for a class of highest-derivative cou-

plings. As a result, whenever the i-th field is at one of its partially-massless points

µi ∈ {0 , . . . , si−1}, the corresponding vertices are consistent provided the condition

µi − |µi+1 − µi−1| ∈ 2N≥0 , [i ≃ i+ 3] , (1.5)

holds. Here, the µi’s are numbers parameterizing the mass-squared values

M2
i = − 1

L2

[

(µi − si + 2)(µi − si − d+ 3)− si
]

, (1.6)

of the spin si fields. It is conceivable that the aforementioned pattern does not

change in the general case, giving rise to an enhancement of the number of consistent

couplings whenever (1.5) is satisfied. This is indeed the case for all the examples that

we have analyzed explicitly, although arriving at a definite conclusion on this issue

would require more efforts so that we leave this problem for future work.

Stückelberg-field formulation. For the purpose of getting the full vertices, one would

need to implement gauge symmetry also for massive fields. Then, as in the massless case,

the remaining parts of the interactions could be recursively determined relying on the gauge

invariance of the vertices. Massive HS fields acquire gauge symmetries in the Stückelberg

formulation, wherein one introduces new fields and gauge symmetries into the massive

theory in such a way not to alter it. The advantage of such a formulation is that it allows

to properly analyze the massless limit of a massive theory that, in general, turns out to be

very delicate. A renowned example is the vDVZ discontinuity [108, 109], related to the fact

that the massless limit of a massive spin 2 is not simply a massless spin 2 but involves a

massless vector and a massless scalar too.12 The analysis preserving the number of DoF in

the massless limit can be carried out within the Stückelberg formulation. Let us mention

here a key difference between the massless limit in flat and in AdS space. While in flat

space a massive spin s splits into a collection of massless fields of spin from s down to 0, in

AdS it gives rise to a massless spin s and a massive spin s− 1 field [21, 46, 48, 50, 51, 97].

With the aim of extending the analysis of the massless limit to the cubic level, we also

provide the Stückelberg formulation of the cubic interactions. The latter can be obtained

making use of the Stückelberg shift encoded in the following generating functions:

K(Y ,Z)P (w1X1 · ∂U1)P (w2X2 · ∂U2)P (w3X3 · ∂U3)
∣

∣

∣

wi=0
, (1.7)

where the Yi’s and the Zi’s are given by

Yi = Yi + ∂Xi
· ∂Xi+1 ∂wi

,

Zi = Zi + ∂Ui+1· ∂Xi−1 ∂wi−1 + ∂Ui−1· ∂Xi+1 ∂wi+1 + ∂Xi+1· ∂Xi−1 ∂wi+1 ∂wi−1 , (1.8)

12Let us mention that the vDVZ discontinuity is absent in (A)dS [49, 53, 110–112].
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and P (z) = 0F1(−µ ; −Lz) is a hypergeometric function. Under the assumption that all

mass parameters of the theory scale uniformly in the massless limit, we find that in AdS the

leading terms of the interactions are massive couplings involving all the massive spin s−1

components of the original spin s fields. On the other hand, when some of the leading parts

are absent, then the new dominant ones start to involve the massless spin s components.

Finally, performing the massless limit in flat space one recovers consistent massless vertices

in agreement with the aforementioned pattern.

Organization of the paper. Section 2 is devoted to the formulation of the free theories

of massive and (partially-) massless fields in the ambient-space formalism. In section 3 we

provide the solutions to the Noether procedure for the corresponding cubic interactions. We

then extend the previous results to the Stückelberg formulation and study the massless limit

of the massive couplings in section 4. Our results as well as some outlook are summarized

and discussed in section 5. Appendix A contains some identities and mathematical tools

used in our construction. In appendix B we provide the detailed examples of 2−2−2 and

3−3−2 interactions, while in appendix C we discuss a class of interactions containing the

highest number of derivatives. Finally, appendices D and E include further details on the

massless limit in flat space and on the ST interactions, respectively.

2 Free HS fields in (A)dS

In this section we present the free theories of massive and (partially-)massless totally-

symmetric HS fields in (A)dS.13 After providing an intrinsic formulation, we introduce the

ambient-space formalism in which the construction of the cubic vertices becomes consider-

ably simpler.

A massive spin-s boson in (A)dS can be described in terms of a totally-symmetric

rank-s tensor field ϕ(s)
µ1...µs . In the following, we use the generating functions of such fields:

ϕA(x, u) :=
∞
∑

s=0

1

s!
ϕA (s)
µ1...µs

(x) u · eµ1(x) · · · u · eµs(x) , (2.1)

where the contraction with the flat auxiliary variables uα is via the inverse (A)dS vielbein

e µ
α (x): u·eµ(x) = uα e µ

α (x), and A is a color index associated with the Chan-Paton factors.

The massive representations of the (A)dS isometry group correspond to HS fields satisfying

the Fierz system:

(D2 −M2)ϕA = 0 , ∂u · eµDµ ϕ
A = 0 , ∂ 2

u ϕA = 0 , (2.2)

where M is the mass operator defined by M2 ϕ(s) := m2
s ϕ

(s), and Dµ is the covariant

derivative:

Dµ := ∇µ +
1

2
ωαβ
µ (x)u[α∂uβ] . (2.3)

Here ∇µ is the usual (A)dS covariant derivative and ωαβ
µ is the (A)dS spin connection, so

that the (A)dS Laplacian operator is given simply by D2.

13Throughout this paper, by (A)dS we refer to any constant-curvature background including flat space.
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The quadratic action for HS fields reproducing the Fierz system (2.2) can be written as

S (2) =
1

2

∫

ddx
√−g

[

δA1A2
e∂u1· ∂u2 ϕA1(x1, u1)

(

D 2
2 −M2

2

)

ϕA2(x2, u2) + . . .

]

xi=x
ui=0

, (2.4)

where the ellipsis denote, henceforth, terms proportional to divergences and traces of the

fields as well as possible auxiliary fields. Since we focus on the TT parts of the cubic

interactions, such terms are not relevant for our discussion although they must be taken

into account in order to construct the full theory.14 The Lagrangian equations are

(D2 −M2)ϕA + . . . ≈ 0 , (2.5)

together with possible equations for the auxiliary fields.

A massless spin-s boson in (A)dS corresponds to the mass-squared value:

m2
s =

(−ǫ)

L2

[

(s− 2)(s+ d− 3)− s
]

, (2.6)

where L is the (A)dS radius and ǫ is a sign, negative for AdS and positive for dS. For this

value of the mass, the action (2.4) admits the gauge symmetries:

δ(0) ϕ(x, u) = u · eµDµ ε(x, u) , (2.7)

with the gauge parameter ε traceless in the Fronsdal’s formulation [104] and traceful in

the unconstrained ones [102, 113]. For simplicity, in this paper we disregard the issue of

trace constraints keeping the unconstrained formulation in mind. However, since we focus

on the TT parts of the Lagrangian such a distinction is irrelevant.

2.1 Ambient-space formalism

It is well known that the d-dimensional Euclidean AdS or Lorentzian dS space can be

embedded in the (d+ 1)-dimensional flat space with metric:

ds2Amb = ηMN dXM dXN , η = (−,+, . . . ,+) . (2.8)

The (A)dS space is then defined as the hyper-surface X2 = ǫ L2, where, as before, ǫ is a

sign, negative for AdS and positive for dS. We concentrate on the region of the ambient

space with ǫX2 > 0, and consider the generating function of totally-symmetric tensor fields

ΦM1...Ms given by

Φ(X,U) =
∞
∑

s=0

1

s!
Φ(s)

M1...Ms
(X)UM1 · · ·UMs . (2.9)

These fields are equivalent to totally-symmetric tensor fields in (A)dS if they are homoge-

neous in XM and tangent to constant X2 surfaces. At the level of the generating function,

the latter conditions translate into

Homogeneity : (X · ∂X − U · ∂U + 2 + µ) Φ(X,U) = 0 , (2.10)

Tangentiality : X · ∂U Φ(X,U) = 0 , (2.11)

14See [19, 20, 24–27, 29, 31–34, 37, 38] for the precise forms of the free action.
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where µ is a parameter related to the (A)dS mass. In order to identify the ambient-space

fields with the (A)dS ones, we parameterize the ǫX2 > 0 region with the radial coordinates

(R, x) given by

XM = RX̂M(x) , X̂2(x) = ǫ , (2.12)

and rotate the auxiliary UM -variables as

UM = X̂M(x) v + L
∂X̂M

∂xµ
(x) e µ

α (x)uα . (2.13)

With this change of variables from (X,U) to (R, x; v, u), the homogeneity and tangentiality

conditions (2.10, 2.11) are solved by the (A)dS intrinsic generating functions as

Φ(R, x; v, u) =

(

R

L

)u·∂u−2−µ

ϕ(x, u) , (2.14)

and the action (2.4) can be written as

S(2) =
1

2

∫

dd+1X δ
(√

ǫX2 −L
) [

δA1A2
e∂U1

· ∂U2 ΦA1(X1, U1) ∂
2
X2

ΦA2(X2, U2) + . . .
]

Xi=X

Ui=0

.

(2.15)

In the ambient space, the Lagrangian equation (2.5) reads

∂2
X Φ+ . . . ≈ 0 , (2.16)

where the ambient-space d’Alembertian is related to the (A)dS one as

∂2
X Φ =

(

R

L

)u·∂u−4−µ

(D2 −M2)ϕ . (2.17)

Here, the mass-squared is given in terms of µ by

M2 =
(−ǫ)

L2

[

(µ− u · ∂u + 2)(µ− u · ∂u − d+ 3)− u · ∂u
]

. (2.18)

Notice that for dS, where ǫ = 1, the parameter µ is in general a complex number, hence, in

order for the fields to be real one has to add the complex conjugate in eq. (2.14). Making

a comparison with (2.6), one can also see that µ = 0 corresponds to the massless case.

Flat-space limit. The flat-space limit L → ∞ can be considered keeping the ambient-

space point of view. In order to do that, we first need to place the origin of the ambient

space in a point on the hyper-surface X2 = ǫ L2 by translating the coordinate system as

XM → XM + L N̂M . (2.19)

Here, N̂ is a constant vector in the ambient space satisfying N̂2 = ǫ. After this shift, taking

the L → ∞ limit one gets

δ
(√

ǫX2 − L
)

−→
L→∞

ǫ δ(N̂ ·X) , (2.20)

– 8 –
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so that the hyper-surface X2 = ǫ L2 becomes the hyperplane N̂ · X = 0, defining the

d-dimensional flat space embedded in the ambient space. Moreover, the homogeneity and

tangentiality conditions (2.10, 2.11) admit a well-defined limit:
(

N̂ · ∂X −
√
−ǫM

)

Φ(X,U) = 0 , N̂ · ∂U Φ(X,U) = 0 , (2.21)

provided one first divides them by L and redefines µ in terms of M according to (2.18).

The latter equations are solved by

Φ(X,U) = e−
√
−ǫM ρ ϕ(x, u) , (2.22)

where ρ := N̂ · X and (x, u) are coordinates on the hyper-surface of constant N̂ · X and

N̂ · U . Since the flat limit from dS presents some issues related to the partially-massless

points, in the following we only consider the limit starting from AdS (ǫ = −1).

Let us conclude this section with a few remarks about the role of the delta function.

Notice that without the latter the ambient-space action (2.15) would contain a diverging

factor coming from the radial integral. The insertion of the delta function precisely cures

this divergence. On the other hand, one may wonder whether we could have avoided such

insertion by taking the extra dimension to be compact. For instance, in flat space one can

consider a compact coordinate ρ ∼ ρ+ L together with a harmonic ρ-dependence of the

fields: Φ = ei
2π
L

mρ ϕ. Then, the ρ-integral gives an orthogonality condition:

∫ L

0
dρ ei

2π
L

m1 ρ e−i 2π
L

m2 ρ = Lδm1 ,m2 . (2.23)

Although this KK reduction works well at the free level, it turns out to be problematic

or at least too restrictive at the cubic level since one gets in this case an undesired mass

equality:
∫ L

0
dρ ei

2π
L

m1 ρ ei
2π
L

m2 ρ e−i 2π
L

m3 ρ = Lδm1+m2 ,m3 . (2.24)

The latter forbids many interactions, notably those arising in ST, and can be avoided via

the insertion of a delta function δ(N̂ ·X).

2.2 Gauge symmetries in the ambient-space formalism

As we have seen, in the intrinsic formulation, HS fields whose mass-squared is given by (2.6),

i.e. µ = 0, admit the gauge symmetries (2.7). This gauge invariance of the massless

theory can be seen also at the ambient space level. We first consider the linearized gauge

symmetries:

δ(0) Φ(X,U) = U · ∂X E(X,U) , (2.25)

where E is the generating function of the gauge parameters. Since the action (2.15) does

not contain any explicit mass term, the gauge invariance seems to be unrelated to the

value of µ. This cannot be the case since it would imply the presence of gauge symmetries

for massive theories in the absence of the Stückelberg fields. Indeed, as we show in the

following, the homogeneity and tangentiality conditions (2.10, 2.11) are compatible with

the gauge symmetry (2.25) only for particular values of µ.
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2.2.1 Massless fields

Starting from eqs. (2.10) and (2.25), one can first derive the homogeneity degree of the

gauge parameters:

(X · ∂X − U · ∂U + µ)E(X,U) = 0 . (2.26)

Then, one has to impose the compatibility of the tangentiality condition (2.11) with the

gauge transformations (2.25):

X · ∂U δ(0) Φ(X,U) = (U · ∂X X · ∂U − µ)E(X,U) = 0 , (2.27)

where we used eq. (2.26). When µ = 0, any gauge parameter satisfying the tangentiality

condition:

X · ∂U E(X,U) = 0 , (2.28)

is a solution of (2.27). Therefore, the ambient-space gauge parameter E is related to the

intrinsic (A)dS one ε as

E(R, x; v, u) =

(

R

L

)u·∂u
ε(x, u) , (2.29)

and the ambient-space gauge transformations (2.25) reduce to the (A)dS ones (2.7).

Massive fields. In the µ 6= 0 case, eq. (2.27) implies

E(X,U) =
1

µ
U · ∂X X · ∂U E(X,U) , (2.30)

that in turn is compatible with the tangent condition provided
[

(U · ∂X)2 (X · ∂U )2 − 2µ (µ− 1)
]

E(X,U) = 0 . (2.31)

If µ 6= 1, the latter gives

E(X,U) =
1

2µ (µ− 1)
(U · ∂X)2 (X · ∂U )2E(X,U) . (2.32)

Hence, when [µ]r := µ (µ − 1) · · · (µ − r + 1) 6= 0, one can iterate r times this procedure

ending up with
[

(U · ∂X)r (X · ∂U )r − r! [µ]r
]

E(X,U) = 0 . (2.33)

Since (X · ∂U )sE(s−1) = 0, whenever [µ]s 6= 0, the spin s−1 component of this equation

implies that eqs. (2.10, 2.11) are compatible with the gauge symmetry only for vanishing

E(s−1). In AdS all unitary representations have non-positive values of µ [114], therefore the

gauge symmetry is allowed only in the massless case.

2.2.2 Partially-massless fields

In dS, the unitary representations [45, 51, 115, 116] include all positive integer values

µ = r ∈ N≥0. In those cases the iteration procedure stops whenever r < s. Therefore,

non-vanishing solutions exist for the gauge parameters satisfying15

(X · ∂U )r+1E(X,U) = 0 . (2.34)

15Similar constraints have been also exploited in [55, 56] keeping the necessary auxiliary fields in order

to achieve an off-shell description.
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Inverting (2.33), the initial gauge parameter E can be solved in terms of a new gauge

parameter Ω as

E(X,U) = (U · ∂X)r Ω(X,U) , (2.35)

where Ω satisfies the homogeneity and tangentiality conditions:

(X · ∂X − U · ∂U − r) Ω(X,U) = 0 , X · ∂U Ω(X,U) = 0 . (2.36)

Thus, Ω can be reduced to the intrinsic dS gauge parameter ω as

Ω(R, x; v, u) =

(

R

L

)u·∂u+r

ω(x, u) . (2.37)

Finally, the gauge transformations16

δ(0) Φ = (U · ∂X)r+1Ω(X,U) , (2.38)

become the dS intrinsic ones:

δ(0) ϕ(x, u) =
[

(u ·D)r+1 + . . .
]

ω(x, u) , (2.39)

whose form has been obtained recursively in [21, 53].

3 Cubic interactions of HS fields in (A)dS

In this section we construct the consistent parity-invariant cubic interactions of massive

and partially-massless HS fields in (A)dS. More precisely, we focus on those pieces which

do not contain divergences and traces of the fields (TT parts). We begin with the most

general expression for the cubic vertices:17

S(3) =
1

3!

∫

dd+1X δ
(√

ǫX2 − L
)

CA1A2A3
(L−1 ; ∂X1 , ∂X2 , ∂X3 ; ∂U1 , ∂U2 , ∂U3)×

× ΦA1(X1, U1) Φ
A2(X2, U2) Φ

A3(X3, U3)
∣

∣

∣Xi=X

Ui=0

+ . . . . (3.1)

Here CA1A2A3
denotes the TT part of the vertices. The cubic interactions in (A)dS are

in general inhomogeneous in the number of derivatives, the lower-derivative parts being

dressed by negative powers of L compared to the highest-derivative one. Hence, the TT

parts of the vertices can be expanded as

CA1A2A3
(L−1 ; ∂X , ∂U ) =

∞
∑

n=0

L−nC [n]
A1A2A3

(Y, Z) , (3.2)

where we have introduced the parity-preserving Lorentz invariants:

Yi = ∂Ui
· ∂Xi+1 , Zi = ∂Ui+1· ∂Ui−1 , [i ≃ i+ 3] . (3.3)

16An anolagous form of the gauge transformations has been obtained in the tractor approach [54].
17The dependence on the XM in the ansatz can be neglected (see [92]).
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Notice that we have dropped divergences, ∂Ui
·∂Xi

, traces, ∂ 2
Ui

as well as terms proportional

to ∂Xi
·∂Xj

’s. Indeed, being proportional to the field equations (2.16) up to total derivatives,

the latter can be removed by proper field redefinitions. Moreover, since we have chosen a

particular set of Yi’s, any ambiguity related to the total derivatives has been fixed.

In order to simplify the analysis, it is convenient to recast the expansion (3.2) in a

slightly different, though equivalent form. First, let us notice that negative powers of L

can be absorbed into derivatives of the delta function:

δ(n)(R− L) Rλ =
(−2)n [λ/2]n

Ln
δ(R− L)Rλ . (3.4)

where δ(n)(R−L) =
(

L
R

d
dR

)n
δ(R−L) . Then, introducing δ̂ with the following prescription:

δ(n)(R− L) ≡ δ(R− L) (ǫ δ̂)n , (3.5)

each coefficient of (3.2) can be redefined as

L−nC [n]
A1A2A3

(Y, Z) = δ̂nC(n)
A1A2A3

(Y, Z) . (3.6)

Notice that C [n]
A1A2A3

and C(n)
A1A2A3

are different functions for n ≥ 1. The entire couplings

can be finally resummed as

CA1A2A3
(δ̂;Y, Z) =

∞
∑

n=0

δ̂nC(n)
A1A2A3

(Y, Z) , (3.7)

where we have used the same notation for both CA1A2A3
(L−1;Y, Z) and CA1A2A3

(δ̂;Y, Z)

although they are different functions.

In order to make contact with the standard tensor notation, let us provide an explicit

example. A vertex of the form

C(δ̂;Y, Z) = (Y 2
1 Y2 Y3 Z1 + cycl.)− δ̂

L
(Y1 Y2 Z1 Z2 + cycl.) +

3

4

(

δ̂

L

)2

Z1 Z2 Z3 , (3.8)

which will turn out to be a consistent coupling involving three partially-massless spin 2

fields (see appendix B), gives

S(3) =
1

2

∫

dd+1X δ
(√

X2 − L
) [

∂P ΦMN ∂M ∂N ΦLQ ∂L ΦPQ (3.9)

+
d− 5

L2
ΦM

N ∂M ΦLP ∂L ΦNP +
(d− 3)(d− 5)

4L4
ΦM

N ΦN

P ΦP

M

]

. (3.10)

3.1 Consistent cubic interactions of massive and massless HS fields

So far, we have not specified whether the fields ΦA are massive or massless. In the following

we use A = α for massive fields and A = a for massless ones. One can consider different cases

depending on the number of massless and massive fields involved in the cubic interactions.

The presence of massive fields does not impose any constraints on the vertices, while,

whenever a massless field takes part in the interactions, the corresponding vertices must

be compatible with the gauge symmetries of that field.
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Gauge consistency can be studied order by order (in the number of fields), and at the

cubic level gives

δ(1)

i S(2) + δ(0)

i S(3) = 0 ⇒ δ(0)

i S(3) ≈ 0 , (3.11)

where ≈ means equivalence modulo the free field equations (2.16) and δ(0)

i is the linearized

gauge transformation (2.25) associated with the massless field Φai . The key point of our

approach is that the TT parts of the vertices can be determined from the Noether proce-

dure (3.11) independently from the ellipses in (3.1). This amounts to quotient the Noether

equation (3.11) by the Fierz systems of the fields ΦAi and of the gauge parameters Eai . In

our notation, this is equivalent to impose, for i = 1,
[

Ca1A2A3
(δ̂;Y, Z) , U1 · ∂X1

] ∣

∣

∣

U1=0
≈ 0 , (3.12)

modulo all the ∂ 2
Xi
’s, ∂Ui

·∂Xi
’s and ∂ 2

Ui
’s. Due to the presence of the delta function, the total

derivative terms generated by the gauge variation do not simply vanish, but contribute as

δ
(√

ǫX2 − L
)

∂XM = − δ
(√

ǫX2 − L
)

δ̂
XM

L
. (3.13)

Using the commutation relations (A.1) together with the identity (A.2), eq. (3.12) is equiv-

alent to the following differential equation:
[

Y2∂Z3 − Y3∂Z2 +
δ̂

L

(

Y2∂Y2 − Y3∂Y3 −
µ2 − µ3

2

)

∂Y1

]

Ca1A2A3
(δ̂;Y, Z) = 0 . (3.14)

The consistent parity-invariant cubic interactions involving massive and massless HS fields

in (A)dS can be obtained as solutions of the above equations. Since Ca1A2A3
is a polynomial

in δ̂, one can solve (3.14) iteratively starting from the lowest order in δ̂. To begin with,

the zero-th order term C(0)
a1A2A3

in (3.7) is given by

C(0)
a1A2A3

= C(0)
a1A2A3

(Y1, Y2, Y3, Z1, G) , (3.15)

where

G := Y1 Z1 + Y2 Z2 + Y3 Z3 . (3.16)

On the other hand, when more than two massless fields are present, it becomes

C(0)
a1a2A3

= C(0)
a1a2A3

(Y1, Y2, Y3, G) . (3.17)

Notice that, while (3.15) is an arbitrary function of five arguments, the zero-th order so-

lution (3.17) depends on four arguments. This is a consequence of the different number

of differential equations imposed on the vertices. On the other hand, in the case of three

massless fields, the third differential equation is redundant so that the number of argu-

ments do not decrease further. Having obtained the zero-th order parts of the solution in

eqs. (3.15, 3.17), what is left is to determine their higher order completions. Eq. (3.14) gives

an inhomogeneous differential equation for C(n≥1)
a1A2A3

, whose solutions are fixed up to a solu-

tion of the corresponding homogeneous equation. However, ambiguities of the interactions

related to these solutions are nothing but redundancies as discussed in [92].
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Before considering eq. (3.14), we first solve its flat limit L → ∞. Once again, this is

achieved via (2.19) after the replacement:

lim
L→∞

1

L
µ = −M . (3.18)

The end result takes the following form:

[

Y2∂Z3 − Y3∂Z2 +
δ̂

2
(M2 −M3) ∂Y1

]

Ca1A2A3
(δ̂;Y, Z) = 0 , (3.19)

so that the zero-th order parts of the solutions coincide with the (A)dS ones. Moreover, in

flat space, the operator δ̂ appearing in (3.5) is simply given by

δ̂ = N̂ · ∂X . (3.20)

Notice also that in this case, for a given C(0)
A1A2A3

, the lower-derivative parts of the vertices

C(n≥1)
A1A2A3

can be recast into total-derivative terms, making them homogeneous in the number

of derivatives. This observation makes it possible to write generic consistent vertices as

arbitrary functions of some fixed building blocks.

Our strategy is as follows. We first solve the flat-space equation (3.19) and express the

general solution in terms of homogeneous objects in the number of derivatives. In this way,

we identify the building blocks of the flat-space cubic interactions. Then, we take as ansatz

for the (A)dS building blocks the deformation of the flat-space ones with the addition of

further total derivatives. Finally, we fix such ansatz requiring the latter to solve (3.12).

In the following, we divide the analysis into four different cases: 3 massive, 1 massless

and 2 massive, 2 massless and 1 massive and finally 3 massless fields. For each of them,

we provide the most general solution as arbitrary functions of the corresponding building

blocks.

A 3 massive. This case is rather trivial since no condition on Cα1α2α3 is imposed. Thus,

the cubic interactions of three massive fields are given by

Cα1α2α3 = Kα1α2α3(Y1, Y2, Y3, Z1, Z2, Z3) . (3.21)

This reflects the fact that we focused only on the TT parts of the vertices. Finding

the remaining parts is in principle non-trivial but we expect that, working within the

gauge invariant formulation à la Stückelberg (see section 4), those parts can be recursively

determined from (3.21).

B 1 massless and 2 massive. When one massless (A1 = a1) and two massive HS fields

are involved in the interactions, one needs to analyze separately the cases wherein the two

fields have equal or different masses.

Equal mass. When M2 = M3 = m 6= 0, the M -dependent term in (3.19) vanishes and

therefore the solution in flat space is given by its zero-th order part:

Ca1α2α3 = Ka1α2α3(Y1, Y2, Y3, Z1, G) . (3.22)
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Regarding the vertices in (A)dS, we make an ansatz by deforming the latter with total-

derivative terms as

Ca1α2α3 = Ka1α2α3(Ỹ1, Ỹ2, Ỹ3, Z1, G̃) , (3.23)

where Ỹi’s and G̃ are given by

Ỹi = Yi + αi ∂Ui
· ∂X ,

G̃ = (Y1 + β1 ∂U1 · ∂X)Z1 + (Y2 + β2 ∂U2 · ∂X)Z2 + (Y3 + β3 ∂U3 · ∂X)Z3 . (3.24)

Requiring the gauge invariance, one ends up with

(α1 + 1)α2 + 1 = 0 ,

(α1 + 1)(β2 + 1) + α1 β3 = 0 ,

(β1 + 1)(β2 + 1) + β3 (β1 + β2 + 1) = 0 , (3.25)

whose general solutions (see [92] for the details) are18

α1 = α , α2 = − 1

α+ 1
, α3 = −α+ 1

α
,

β1 = β , β2 = −β + 1

α+ 1
, β3 = −α− β

α
. (3.26)

As we have anticipated, the different values of the αi’s and the βi’s are related to the

redundancies of the solutions.

Different masses. When M2 6= M3 , the zero-th order part of the solution C(0)
a1α2α3 (3.15)

is an arbitrary function of the Yi’s, Z1 and G. However, not all of these arguments admit

a solution for C(1)
a1α2α3 . In particular, C(0)

a1α2α3 = Y2, Y3 and Z1 are already consistent and

do not need to be completed with C(n≥1)
a1α2α3 , while

C(0)
a1α2α3

= Y3 Y1 , Y1 Y2 , (3.27)

involve next order contributions given by

C(1)
a1α2α3

=
1

2
(M2 −M3)Z2 ,

1

2
(M3 −M2)Z3 , (3.28)

respectively, and C(n≥2)
a1α2α3 = 0. Therefore, the flat-space solution can be written as

Ca1α2α3 = Ka1α2α3(Y2, Y3, Z1, H2, H3) , (3.29)

where the Hi’s are given by

Hi := Yi+1 Yi−1 +
1

2
N̂ · ∂X (Mi −Mi+1 −Mi−1)Zi . (3.30)

18Notice that in the present conventions, the definitions of the αi’s and the βi’s differ from the ones used

in [92]. The latter are recovered through the replacements: αi → (αi − 1)/2 and of the βi → (βi − 1)/2.
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Notice that, using the properties of the delta function (3.20), they can be recast in the

form

Hi = Yi+1 Yi−1 +
1

2

[

M2
i − (Mi+1 +Mi−1)

2
]

Zi

= Yi+1 Yi−1 −
1

2
∂X · (∂Xi

− ∂Xi+1 − ∂Xi−1)Zi . (3.31)

The first expression in eq. (3.31) does not contain any total-derivative part, thus one can

trivially reduce it to d dimensions. On the other hand, the second one does not contain

any explicit mass dependence, and this makes the deformation of arbitrary functions of the

latter to (A)dS easier. Indeed, by adding proper total-derivative terms to the Yi±1’s, one

gets the (A)dS counterpart of (3.31):

H̃i := Yi+1 (Yi−1 − ∂X · ∂Ui−1)−
1

2
∂X · (∂Xi

− ∂Xi+1 − ∂Xi−1)Zi . (3.32)

Up to field redefinitions, the latter can be recast in a form where the gauge invariance is

more transparent:

H̃i ≈ ∂Xi+1· ∂Xi−1 ∂Ui−1· ∂Ui+1 − ∂Xi+1· ∂Ui−1 ∂Xi−1· ∂Ui+1 . (3.33)

Finally, the vertices in (A)dS are given by

Ca1α2α3 = Ka1α2α3(Y2, Y3, Z1, H̃2, H̃3) . (3.34)

C 2 massless and 1 massive. This case can be recovered from the previous one as the

intersection between the solutions:

Ca1A2A3 = Ka1A2A3(Y2, Y3, Z1, H̃2, H̃3) , CA1a2A3 = KA1a2A3(Y1, Y3, Z2, H̃1, H̃3) , (3.35)

that is

Ca1a2α3 = Ka1a2α3(Y3, H̃1, H̃2, H̃3) . (3.36)

D 3 massless. This case is a combination of three equal mass cases:

Ca1a2a3 = Ka1a2a3(Ỹ1, Ỹ2, Ỹ3, G̃) . (3.37)

Here, the Ỹi’s and G̃ are given by (3.24) with the αi’s and the βi’s satisfying eq. (3.25) and

cyclic permutations thereof. Interestingly, the solutions (3.26) of (3.25) fulfill automatically

also its cyclic counterparts.

At this stage we have completed the systematic constructions of the TT parts of the

cubic interactions involving massive and massless HS fields in (A)dS. Before considering

the partially-massless cases, let us make a few remarks. Similarly to what happens in the

(A)dS massless case [92], all higher-order parts of the solutions C(n)
A1A2A3

are encoded via

functions of simple building blocks that, being linear in ∂Ui
for any i = 1, 2, 3, describe the

consistent couplings among fields of spin 1 and 0 only. These results resonate with the idea

that spin 1 couplings can be used as building blocks of HS interactions [80, 91].
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3.2 Consistent cubic interactions of partially-massless HS fields

In this section we focus on the cubic interactions in a dS background where, besides massive

and massless fields, partially-massless fields also appear. As we have seen in section 2.2.2,

partially-massless fields with homogeneities µ = r ∈ {0 , 1 , . . . , s − 1} admit the gauge

symmetries (2.38). Then, according to eq. (3.11), the cubic interactions ought to be com-

patible with those gauge symmetries leading to the following condition:

[

CA1A2A3
(δ̂;Y, Z) , (U1 · ∂X1)

r1+1
] ∣

∣

∣

U1=0
≈ 0 . (3.38)

Once again, neglecting all the ∂ 2
Xi
’s, ∂Ui

· ∂Xi
’s and ∂ 2

Ui
’s, one ends up with

∑

ℓ1+ℓ2+ℓ3=r1+1

(

r1 + 1

ℓ1 ℓ2 ℓ3

)

[

Y3 ∂Y3 − Y2 ∂Y2 − 2Z3 ∂Z3 +
r1 + µ2 − µ3

2

]

ℓ1
×

×
(

δ̂

L
∂Y1

)ℓ1

(Y3 ∂Z2)
ℓ2

(

−Y2 ∂Z3 +
2 δ̂

L
Z3 ∂Z3 ∂Y1

)ℓ3

CA1A2A3
(δ̂;Y, Z) = 0 , (3.39)

where [a]n is the descending Pochhammer symbol we have introduced previously.

Since (3.39) is an higher-order partial differential equation, solving it is a non-trivial task.

However, if we restrict the attention to the s1−s2−s3 couplings with fixed si’s, then the

solution is of the form:

CA1A2A3
(δ̂;Y, Z) =

∑

σi+τi+1+τi−1=si

cτ1 τ2 τ3A1A2A3
(δ̂) Y σ1

1 Y σ2
2 Y σ3

3 Z τ1
1 Z τ2

2 Z τ3
3 , (3.40)

where the number of the undetermined coefficients cτ1 τ2 τ3A1A2A3
is of the order N ∼ s1 s2 s3.

Hence, the coupling can be viewed as a vector in a N -dimensional space, and eq. (3.39)

reduces to a set of linear equations for that vector. Then, the consistent couplings cor-

respond to the solution space of such linear system. This procedure can be conveniently

implemented in Mathematica. For instance, in the case of 4−4−2 couplings between two

spin 4 fields at their first partially-massless points (µ = 1) and a massless spin 2, we find one

ten-derivative, two eight-derivative, two six-derivative and one four-derivative couplings:

C1 = Y 4
1 Y 4

2 Y 2
3 − 12 δ̂2 Y 2

1 Y 2
2 (Y1 Z1 + Y2 Z2)

2 + 48 δ̂3 Y1 Y2 (Y1 Z1 + Y2 Z2)Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

− 24 δ̂4 Z2
3

[

6Y 2
1 Z2

1 + 6Y 2
2 Z2

2 + 4Y2 Y3 Z2 Z3 + Y 2
3 Z2

3 + 2Y1 Z1 (7Y2 Z2 + 2Y3 Z3)
]

+ 96 δ̂5 Z1 Z2 Z
3
3 ,

C2 = Y 3
1 Y 3

2 Y 2
3 Z3 − 3 δ̂ Y 2

1 Y 2
2 (Y1 Z1 + Y2 Z2)

2 + 12 δ̂2 Y1 Y2 (Y1 Z1 + Y2 Z2)Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

− 6 δ̂3 Z2
3

[

6Y 2
1 Z2

1 + 6Y 2
2 Z2

2 + 4Y2 Y3 Z2 Z3 + Y 2
3 Z2

3 + 2Y1 Z1 (7Y2 Z2 + 2Y3 Z3)
]

+ 24 δ̂4 Z1 Z2 Z
3
3 ,

C3 = Y 3
1 Y 3

2 Y3 (Y1 Z1 + Y2 Z2) + δ̂ Y 2
1 Y

2
2

(

6Y 2
1 Z2

1 + 11Y1 Y2 Z1 Z2 + 6Y 2
2 Z2

2

)

−18 δ̂2 Y1 Y2 (Y1 Z1 + Y2 Z2)Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

+ 6 δ̂3 Z2
3

[

6Y 2
1 Z2

1 + 2Y2 Z2 (3Y2 Z2 + Y3 Z3) + Y1 Z1 (15Y2 Z2 + 2Y3 Z3)
]

− 12 δ̂4 Z1 Z2 Z
3
3 ,
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C4 = −Y 2
1 Y 2

2

(

Y 2
1 Z2

1 + 2Y1 Y2 Z1 Z2 + Y 2
2 Z2

2 − Y 2
3 Z2

3

)

+4 δ̂ Y1 Y2 (Y1 Z1 + Y2 Z2)Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

− 2 δ̂2 Z2
3

[

6Y 2
1 Z2

1 + 6Y 2
2 Z2

2 + 4Y2 Y3 Z2 Z3 + Y 2
3 Z2

3 + 2Y1 Z1 (7Y2 Z2 + 2Y3 Z3)
]

+ 8 δ̂3 Z1 Z2 Z3
3 ,

C5 = Y 2
1 Y 2

2 (Y1 Z1 + Y2 Z2) (Y1 Z1 + Y2 Z2 + Y3 Z3)

− δ̂ Y1 Y2 Z3

[

6Y 2
1 Z2

1 + 2Y2 Z2 (3Y2 Z2 + 2Y3 Z3) + Y1 Z1 (13Y2 Z2 + 4Y3 Z3)
]

+2 δ̂2 Z2
3

[

3Y 2
1 Z2

1 + Y2 Z2 (3Y2 Z2 + Y3 Z3) + Y1 Z1 (8Y2 Z2 + Y3 Z3)
]

− 2 δ̂3 Z1 Z2 Z
3
3 ,

C6 = Y1 Y2 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3)
2

− δ̂ Z2
3

[

3Y 2
1 Z2

1 + 3Y 2
2 Z2

2 + 4Y2 Y3 Z2 Z3 + Y 2
3 Z2

3 + 4Y1 Z1 (2Y2 Z2 + Y3 Z3)
]

+4 δ̂2 Z1 Z2 Z
3
3 , (3.41)

where for simplicity we set L = 1 while the L dependence can be recovered replacing δ̂ by

δ̂/L. In appendix B, we also provide the examples of 2−2−2 and 3−3−2 couplings for

any combinations of the masses.

Remember that in the previous section the solutions were obtained in a compact form

recasting the lower-derivative parts of the vertices into total derivatives. We expect this way

of simplifying couplings to work in the partially-massless cases too. Indeed, the following

class of highest-derivative couplings

CA1A2A3
= KA1A2A3

(Ỹ1, Ỹ2, Ỹ3) , (3.42)

is also compatible with the partially-massless gauge invariance provided the homogeneities

of the fields satisfy

ri − |µi+1 − µi−1| ∈ 2N≥0 . (3.43)

Here the i-th field is at the ri-th partially-massless point while the other two fields have

generic homogeneities µi+1 and µi−1. The proof of the conditions (3.43) can be found in

appendix C. This implies that a partially-massless spin s field can interact with two scalars

if and only if the masses of the latter satisfy (3.43). Moreover, when all the three fields are

partially-massless, the ri’s satisfy a triangular inequality wherein one or three of them are

even integers, ri = ei, while the others are odd, ri = oi:

e1

o2

o3

,

e1

e2

e3

.

Note that this triangular inequality is not imposed on the spins but on the homogeneities

µi’s which are related to the masses according to eq. (2.18). The conditions (3.43) reveal the

systematics of the partially-massless vertices. Let us recall that whenever one massless field

takes part to generic massive interactions, the vertices split into two categories according

to whether the other two fields have equal or different masses. The condition (3.43) is a

generalization of this pattern to the partially-massless cases. We expect that, as in the

massless case (see the 1 massless and 2 massive case of section 3.1), whenever (3.43) holds
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we have G̃-like building blocks on top of the Ỹi’s, otherwise, one is left with Ỹ2, Ỹ3, H̃2-like

and H̃3-like building blocks.19

Despite at present we lack the building blocks for the interactions involving partially-

massless fields, we can do a systematic analysis of the zero-th order parts of the solution

C(0)
A1A2A3

. In this case, eq. (3.39) reduces to

(Y2∂Z3 − Y3∂Z2)
r1+1C(0)

A1A2A3
(Y, Z) = 0 , (3.44)

whose corresponding solutions are given by

C(0)
A1A2A3

=
∑

m2+m3≤r1

Zm2
2 Zm3

3 C̄
(0)m2m3
A1A2A3

(Y1, Y2, Y3, Z1, G) . (3.45)

Notice that, compared to the massless case, some factors of Z2 and Z3 are also allowed

increasing the number of possible ways of writing the couplings. However, when restricted

to particular couplings with fixed spins, the number of solutions may be smaller than in

the massless case.

4 Stückelberg formulation

In this section, we first consider the free theories of massive and massless HS fields in the

Stückelberg formalism, and then extend the discussion to the cubic level. Once again,

we focus on the TT parts of the vertices. It is worth stressing that, as in the massless

case, working with a gauge invariant description for massive fields might give us a recipe in

order to fix the remaining parts of the vertices. Moreover, as mentioned in the Introduction,

Stückelberg formulation represents a convenient framework in order to study the massless

limit of massive theories.

4.1 Free Stückelberg fields from dimensional reduction

The Stückelberg description of massive HS fields can be conveniently obtained through

dimensional reduction of a (d + 1)-dimensional massless theory. In the following we first

provide the example of a spin 1 field and then generalize it to arbitrary-spin fields.

Spin 1. Let us consider the theory of a massive spin 1 field aµ:

S = −1

2

∫

ddx
√
ǫ g

(

1

2
fµν f

µν +m2 aµ a
µ

)

, (4.1)

where fµν = ∂µ aν − ∂ν aµ. Because of the mass term this theory is not gauge invariant

and describes the propagation of the DoF associated to a massive spin 1 particle. Notice

that, performing the limit m → 0 at this level, one ends up with a massless spin 1 field,

19In fact, it is even possible that the G̃ and the H̃i’s defined for the massless case still work for the

partially-massless cases. However, checking it requires non-trivial computations and we postpone this issue

for future work.
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loosing one DoF. On the other hand, before taking the massless limit, one can introduce a

new scalar field α1 via the Stückelberg shift:

aµ = α0µ +
1

m
∂µ α1 , (4.2)

in such a way that the resulting action acquires the gauge symmetries δα0µ = ∂µ ε0 and

δα1 = −mε0. Then, the action becomes

S = −1

2

∫

ddx
√
ǫ g

[

1

2
f0µν f

µν
0 +m2 α0µ α

µ
0 + ∂µα1 ∂

µα1 + 2mαµ
0 ∂µα1

]

, (4.3)

which, in the massless limit, describes a massless spin 1 and spin 0 field, preserving the

number of DoF.

The above discussion can be restated in the ambient space formalism. First of all, one

can obtain the Stückelberg action through radial reduction of the massless ambient-space

one:

S = −1

4

∫

dd+1X δ
(

√
ǫX2 − L

)

FMN FMN , (4.4)

where the spin-1 field is homogeneous and tangent:

(X · ∂X + µ+ 1)AM = 0 , XM AM = 0 . (4.5)

The tangentiality condition implies Ad = 0 and, after the identification Aµ = aµ, one recov-

ers the action (4.1). Remember that the gauge symmetry δAM = ∂ME of the action (4.4)

is incompatible with the tangentiality condition when µ is different from zero. On the

other hand, one can insist on a gauge invariant formulation also for µ 6= 0 provided the

tangentiality condition is relaxed. In this case one has to promote the tangent field AM to

a generic one AM with non-vanishing radial part: XM AM 6= 0. Then, after identifying

Aµ = α0µ , Ad = α1 , (4.6)

in (4.4), one recovers the Stückelberg action (4.3). Moreover, the usual Stückelberg

symmetry is obtained by decomposing δAM = ∂ME into its tangent and radial parts.

Such decomposition can be also carried out in terms of ambient-space fields as AM =

A0M +A1 LXM/X2, ending up with

δA0M =

(

δN

M − XM XN

X2

)

∂NE , δA1 =
1

L
XM ∂ME = −µ

L
E . (4.7)

Finally, the Stückelberg shift (4.2) can be realized as well at the ambient space level as

AM =

(

δN

M +
1

µ
∂XM XN

)

AN . (4.8)
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General spins. In the previous sections we have discussed how the quadratic action

of massive HS fields (2.4) can be obtained through radial reduction of the ambient-space

massless one (2.15). In the following, we introduce Stückelberg fields promoting the tangent

ambient-space fields Φ to generic unconstrained ones Φ. In this case, after the radial

reduction, one is led to

Φ(R, x; v, u) =

(

R

L

)u·∂u+v∂v−2−µ

ϕ(x; v, u) . (4.9)

The (d+1)-dimensional tensor fields ϕ can be expanded into d-dimensional ones of different

ranks as

ϕ(x; v, u) :=
∞
∑

r=0

vr

r!
ϕr(x, u) , (4.10)

where the components ϕr with r = 1, 2, . . . correspond to the Stückelberg fields. Although

the action and the corresponding field equations for this system stay the same as in the

unitary gauge (ϕr≥1 = 0), having relaxed the tangentiality condition, the theory acquires

the gauge symmetries:

δ(0) Φ(X,U) = U · ∂X E(X,U) , (4.11)

with gauge parameters:

E(R, x; v, u) =

(

R

L

)u·∂u+v∂v−µ

ε(x; v, u) . (4.12)

The (d+ 1)-dimensional gauge parameters ε can be expanded into d-dimensional ones as

ε(x; v, u) :=
∞
∑

r=0

vr

r!
εr(x, u) . (4.13)

Let us mention once again that, depending on the kind of formulation, the gauge fields as

well as the gauge parameters can have trace constraints. However, since we focus on the

TT part of the Lagrangian, they are not relevant for our discussion.

The radial reduction considered so far can be also restated in terms of ambient-space

quantities as

Φ :=
∞
∑

r=0

1

r!

(

LX · U
X2

)r

Φr , E :=
∞
∑

r=0

1

r!

(

LX · U
X2

)r

Er , (4.14)

where

Φr =

(

R

L

)u·∂u+2(r−1)−µ

ϕr , Er =

(

R

L

)u·∂u+2r−µ

εr . (4.15)

Decomposing the gauge transformation (4.11) into its tangent and normal parts, one gets

δ(0) Φr =

[

U · ∂X + (µ− 2 r)
X · U
X2

]

Er +
L

X2

[

U2 − (X · U)2

X2

]

Er+1 −
r (µ− r + 1)

L
Er−1 .

(4.16)
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From these gauge transformations, one can see that, when µ 6= 0, all Φr≥1’s can be gauge

fixed to zero, going back to the unitary gauge. On the other hand, in the massless limit,

one can gauge fix to zero only the Φr≥2’s, ending up with a massless field Φ0 together with

a massive one Φ1 (corresponding to µ = −2). This differs from what happens in flat space

where none of the Φr’s can be gauged away. In other words, if we consider the massless

limit of the flat-space Lagrangian of massive HS fields à la Stückelberg, it decomposes into

the sum of massless ones: e.g. a massive spin s reduces to massless spin s, s−1, down to 0

fields. Therefore, the total number of physical DoF stays the same as in the massive case.

Similarly to the spin 1 case, it is possible to restate the Stückelberg shift in terms of

ambient-space quantities as

Φ(X,U) =
∞
∑

r=0

ar
r!

(U · ∂X)r W r Φ(X,U) , W :=
1

L
X · ∂U . (4.17)

Demanding either the compatibility with the unitary gauge, i.e. δ(0) Φ = 0 under (4.11), or

with the tangentiality condition (2.11), the coefficients ar’s are fixed as

ar =
Lr

[µ]r
. (4.18)

In the flat limit one gets

W = N̂ · ∂U , ar =
(−1)r

M r
. (4.19)

Notice that both the AdS and the flat-space results present a pole in the massless limit,

while in dS further (partially-massless) poles appear at µ = 1, . . . s− 1.

4.2 Cubic interactions of HS fields with Stückelberg symmetries

In this section we present the Stückelberg formulation of the consistent cubic interactions

of massless and massive HS fields. Once again we restrict the attention to the TT parts

of such vertices which are provided in terms of operators and fields in the ambient space

formalism. The key point is that in this case the dependence on XM cannot be neglected

anymore and the possible (d + 1)-dimensional cubic vertices are more general than the

unitary gauge ones (3.1). In particular, as in section 3, we can simplify the ansatz for the

cubic couplings making use of all scalar operators:

S(3) =
1

3!

∫

dd+1X δ
(√

ǫX2 − L
)

CA1A2A3
(δ̂;Y, Z,W )×

× ΦA1(X1, U1) Φ
A2(X2, U2) Φ

A3(X3, U3)
∣

∣

∣Xi=X

Ui=0

, (4.20)

where, compared to the unitary gauge case, we have introduced the additional scalar quan-

tities

Wi =
1

L
Xi · ∂Ui

. (4.21)

Gauge invariance under (4.11) imposes the following equation:

[

CA1A2A3
(δ̂;Y, Z,W ) , Ui · ∂Xi

]

≈ 0 , (4.22)
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which, once again can be solved modulo the Fierz system. However, in this case the

non-commutativity between Yi and Wi+1 makes the analysis more involved. On the other

hand, one can get the cubic vertices for the Stückerberg fields by exploiting the Stückelberg

shift (4.17). Let us stress that we have explicitly checked the equivalence between the

latter approach and resolution of eq. (4.22). The non-commutativity problem arises in this

approach as well, and in order to deal with it we choose an ordering prescription where

all the Wi’s are placed after the Yi’s and the Zi’s. For this purpose, it is convenient to

introduce a new variable w and write the Stückelberg shift (4.17) as

Φ(X,U) = eU ·∂X ∂w P (wW )Φ(X,U)
∣

∣

∣

w=0
, (4.23)

where

P (z) =
∞
∑

r=0

(Lz)r

r! [µ]r
= 0F1(−µ ; −Lz) . (4.24)

Then, the cubic vertices in the Stückelberg formulation can be obtained by shifting the

unitary gauge ones as

CA1A2A3
= KA1A2A3

(Y ,Z)P (w1W1)P (w2W2)P (w3W3)
∣

∣

∣

wi=0
, (4.25)

where the Yi’s and the Zi’s are given by

Yi := Yi e
Ui·∂Xi

∂wi

∣

∣

Ui=0
= Yi + ∂Xi

· ∂Xi+1 ∂wi
,

Zi := Zi e
Ui·∂Xi

∂wi

∣

∣

Ui=0
= Zi + ∂Ui+1· ∂Xi−1 ∂wi−1 + ∂Ui−1· ∂Xi+1 ∂wi+1

+ ∂Xi+1· ∂Xi−1 ∂wi+1 ∂wi−1 . (4.26)

Depending on the number of massless fields involved in the interactions, one recovers a

dependence of the vertices on the variables Ỹi, G̃ and H̃i, which are defined as in eq. (4.26)

starting from the Ỹi’s, G̃ and the H̃i’s, respectively.

4.3 Massless limit

As mentioned in the Introduction, the relation between massless and massive HS theories

is of particular interest with regards to the possibility of having a better understanding of

both ST and HS gauge theory in (A)dS. Although it is difficult to realize a mass generation

mechanism for HS fields, one might get some hints for that by studying the massless limit

of massive theories.

In the previous section we have shown that the cubic vertices in the Stückelberg formu-

lation are given by arbitrary functions KA1A2A3
of the Ỹi’s and of the Z̃i’s. Moreover, when

some of the fields are massless, G̃ and the H̃i’s also appear. In order to properly study

the behavior of such vertices in the limit where some of the masses go to zero, one should

know in principle how the coupling function KA1A2A3
scales. However, as we will see in the

following, interesting information can be also extracted considering generic behaviors in

this limit. For simplicity, we consider the case where all the mass parameters of the theory

scale uniformly with a mass scale µ:

µi = νi µ . (4.27)
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Since the massless limit depends on the background, we analyze the AdS and the flat-space

cases separately.

AdS case. As we have seen in section 4.1, in the massless limit µ → 0 one can gauge fix

all the lower spin components up to spin s−2 ending up with:

Φ = Φ0 +
LX · U
X2

Φ1 , (4.28)

where Φ0 and Φ1 are a spin s massless field and a spin s−1 massive field, respectively. In

this way, the Stückelberg shift (4.23) simplifies to

Φ =

(

1− 1

µ
U · ∂X W

)

Φ . (4.29)

Hence, the couplings (4.25) can be expanded as

CA1A2A3
= KA1A2A3

(Y, Z) +
1

µ

3
∑

i=1

K[i]
A1A2A3

(δ̂;Y, Z)Wi

+
1

µ2

3
∑

i=1

K[i+1,i−1]
A1A2A3

(δ̂;Y, Z)Wi+1Wi−1 +
1

µ3
K[1,2,3]

A1A2A3
(δ̂;Y, Z)W1W2W3 ,

(4.30)

where the K[ ...]
A1A2A3

’s are given by successive commutators of KA1A2A3
:

K[...,i]
A1A2A3

:=

[

K[...]
A1A2A3

, − 1

νi
Ui · ∂Xi

]

. (4.31)

In the µ → 0 limit, the leading terms are massive couplings of the form K[1,2,3]
A1A2A3

involving

all the massive spin s − 1 components Φ1 = W Φ. On the other hand, if some of leading

parts of the couplings are absent, then the dominant ones contain less number of Wi’s and

consequently the interactions involve the corresponding massless fields.

Flat-space case. The situation in flat space is rather different from the one in AdS.

First of all, in the massless limit one can not gauge fix the Stückelberg fields to zero so that

the latter become all massless fields. Moreover, since the non-commutativity problem is

absent, the Stückelberg vertices (4.25) can be simplified performing the wi-contractions as

CA1A2A3
= KA1A2A3

(Ŷ , Ẑ) , (4.32)

where

Ŷi = yi −
M2

i +M2
i+1 −M2

i−1

2Mi
∂vi ,

Ẑi = zi+
1

Mi−1
yi+1 ∂vi−1−

1

Mi+1
yi−1 ∂vi+1+

M2
i +M2

i−1 −M2
i+1

2Mi+1Mi−1
∂vi+1 ∂vi−1 . (4.33)

Here we have also performed the dimensional reduction providing the building blocks Ŷ

and Ẑ in terms of the d-dimensional intrinsic ones:

yi := ∂ui
· ∂xi+1 , zi := ∂ui+1· ∂ui−1 . (4.34)

– 24 –



J
H
E
P
0
7
(
2
0
1
2
)
0
4
1

Then, under the assumption (4.27), one can observe the following behavior:

Ŷi = yi +O(µ) , µ Ẑi =
1

νi−1
yi+1 ∂vi−1 −

1

νi+1
yi−1 ∂vi−1 +O(µ) , (4.35)

in the µ → 0 limit. Notice that the dominant terms contained in the Ẑi’s lead to consistent

massless interactions and involve at least one Stückelberg field. The terms proportional to

the zi’s, which can violate the gauge invariance, are contained in the subdominant O(µ)

part. Similarly, the variables Ĝ and Ĥi’s behave as

Ĝ = g +
ν22 + ν23 − ν21

2 ν2 ν3
y1 ∂v2 ∂v3 + cyclic,

Ĥi = yi+1 yi−1 +O(µ) , (4.36)

where g := y1 z1 + y2 z2 + y3 z3. Finally, the generic leading parts of the massive cubic ver-

tices can be obtained by simply replacing all the variables by their leading terms (4.35, 4.36).

The resulting vertices involve only the yi’s and g together with the ∂vi ’s which encode the

contribution of the Stückelberg fields. Hence, they are consistent with the gauge symme-

tries of the massless theory. For the sake of completeness, one should also analyze the cases

where some of the leading parts cancel. This analysis can be found in appendix D.

5 Discussion

In this paper we have obtained the solutions to the cubic-interaction problem for mas-

sive and partially-massless HS fields in a constant-curvature background. This has been

achieved through a dimensional reduction of a (d+ 1)-dimensional massless theory with a

delta function insertion in the action.20 For simplicity, the entire construction has been

carried out focusing on the TT part of the Lagrangian. We expect that the completion

of such vertices can be performed within the Stückelberg formulation, adding divergences

and traces of the fields together with possible auxiliary fields.

Our studies are mainly motivated by ST whose very consistency rests on the presence

of infinitely many HS fields. Conversely, string interactions may provide useful information

on the systematics of the consistent HS couplings. In [79, 80], cubic vertices of totally-

symmetric tensors belonging to the first Regge trajectory of the open bosonic string were

investigated. Those vertices are encoded in the following generating function:

1√
GN

KA1A2A3
= i

go
α′

Tr
[

TA1
TA2

TA3

]

exp
(

i
√
2α′ (y1 + y2 + y3) + z1 + z2 + z3

)

+ i
go
α′

Tr
[

TA2
TA1

TA3

]

exp
(

−i
√
2α′ (y1 + y2 + y3) + z1 + z2 + z3

)

,

(5.1)

20Actually, any integrable function of the same argument is good. In particular one can consider the

insertion of an Heavyside theta function, that is tantamount to introducing a cut-off for the diverging

radial integral, or similarly, a boundary for the ambient space. Then, the total-derivative terms appearing

in the interactions play the role of boundary actions which have to be taken into account whenever the

base space-time has a non-empty boundary. See [117] for the recent construction of boundary actions for

the free theory of massless HS fields in AdS.
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where GN denotes Newton’s constant, go the open string coupling constant and α′ the

inverse string tension related to the masses of the string states as

M2 ϕ(s) =
s− 1

α′ ϕ(s) . (5.2)

Remarkably, the Taylor coefficients of the exponential function and the spectrum (5.2)

nicely combine to reproduce the right vertices belonging to the classification considered in

section 3.1 (the details can be found in appendix E). In this respect, it would be interesting

to understand how the exponential function (5.1) fits in with other ST properties and what

its AdS counterpart may be. In particular, we believe that the choice of the exponential is

crucial for the global symmetries as well as for the planar dualities of the theory. Let us

mention however that in AdS an exponential couplings of the form:

ei
√
2α′ (Ỹ1+Ỹ2+Ỹ3)+Z1+Z2+Z3 , (5.3)

where the Ỹi’s are any total-derivative deformations of the Yi’s, is incompatible with any

spectrum containing a massless spin 1 field, reflecting the difficulties encountered in quan-

tizing ST on (A)dS backgrounds [118–120]. From this perspective it is conceivable that

a better understanding of the global symmetries of ST as well as of their implementation

at the interacting level may shed some light on this issue. Moreover, coming back to flat

space, Stückelberg fields can be also introduced into the vertices of the first Regge trajec-

tory (5.1) using the Ŷi’s and the Ẑi’s in place of the yi’s and the zi’s. Clarifying their role

is potentially interesting in view of a deeper comprehension of the states present in the

lower Regge trajectories, to whom the Stückelberg fields may be related.

In the present paper we also studied the massless limit of the interactions focusing on

the scaling of the masses leaving aside the behavior of the coupling functions. However, a

complete analysis should take into account such behavior, which can depend in principle

on more than one scale. For instance, conventional symmetry breaking scenarios, where

masses are generated through interactions, need at least two mass scales: one related to

the vev of the scalars (or more generally even-spin fields) and the other related to the

coupling constants of the symmetric theory. Therefore, in order to properly address the

mass generation issue in HS theories, it is necessary to have some control on the higher-

order interactions and possibly on the full nonlinear theory. In this respect, if ST draws

its origin from the spontaneous breaking of a HS gauge symmetry, one could expect that,

besides the string tension, some new mass scales appear in the underlying fundamental

description.

Finally, in order to complete the classification of the cubic interactions, it would be

necessary to study the gauge deformations induced by the latter. Besides allowing us to

address the issues related to the gravitational and the electromagnetic minimal couplings

of HS fields, this would possibly shed some light on HS algebras and on their implications.

Moreover, in order to get further insights into ST it would be interesting to extend the

present analysis to fermionic and mixed-symmetry fields, and eventually to higher-order

interactions along the lines of [80, 91, 121]. Last, let us stress that the ambient-space

framework has proven particularly suitable in order to deal with interactions in curved
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backgrounds. For this reason, it is conceivable that this approach would give new insights

into the AdS/CFT correspondence in relation to HS theories.
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A Useful identities

This appendix contains some identities and mathematical tools used in our construction of

the cubic vertices. Basic commutation relations among the operators (3.3) are
[

Yi , Uj · ∂Xj

]

= δij ∂Xi
· ∂Xi+1 ,

[

Zi , Ui+1 · ∂Xi+1

]

= ∂X · ∂Ui−1 − Yi−1 ,
[

Zi , Ui−1 · ∂Xi−1

]

= Yi+1 ,
[

Xi · ∂Ui
, F (Y, Z)

]

= −Zi+1 ∂Yi−1 F (Y, Z) ,
[

Xi · ∂Xi
, F (Y, Z)

]

= −Yi−1 ∂Yi−1 F (Y, Z) ,
[

F (Y, Z) , Ui · ∂Ui

]

=
(

Yi ∂Yi
+ Zi+1 ∂Zi+1 + Zi−1 ∂Zi−1

)

F (Y, Z) . (A.1)

Here i, j are defined modulo 3: (i, j) ∼= (i+3, j +3). Another identity used throughout all

the paper concerns the commutator between an arbitrary function f(A) of a linear operator

A and an other linear operator B:

[ f(A) , B ] =
∞
∑

n=1

1

n!
(adA)

nB f (n)(A) , (A.2)

where adAB = [A , B ] and f (n)(A) denotes the n-th derivative of f with respect to A.

In order to prove the latter formula, we represent f(A) as a Fourier integral so that the

commutator appearing in (A.2) can be written as

[ f(A) , B ] =

∫ ∞

−∞
dt [ eitA , B ] f(t) . (A.3)

Using the well-known identity

eitAB e−itA =
∞
∑

n=0

(it)n

n!
(adA)

nB , (A.4)

eq. (A.3) becomes

[ f(A) , B ] =
∞
∑

n=1

1

n!
(adA)

nB

∫ ∞

−∞
dt (it)n eitA f(t) =

∞
∑

n=1

1

n!
(adA)

nB f (n)(A) . (A.5)

Since our vertices are arbitrary functions of commuting operators, formula (A.2) applies

independently to each of them.

– 27 –



J
H
E
P
0
7
(
2
0
1
2
)
0
4
1

B 2−2−2 and 3−3−2 partially-massless interactions

This appendix is devoted to the examples of 2−2−2 and 3−3−2 couplings involving

at least one partially-massless field. The results are collected in the following tables in

which we organized the solutions for given (µ1, µ2, µ3) according to the maximal number

of derivatives denoted by ∂. Arbitrary linear combinations of such solutions are consis-

tent cubic couplings. Let us mention that in all cases we have checked, the number of

solutions for the interactions involving massive fields is enhanced for those mass values

satisfying eq. (3.43). For brevity, we consider such cases only in the 2−2−2 table (see

e.g. (µ1, µ2, µ3) = (1, 1 , 2) , (1, µ3 + 1, µ3) , (1, µ3 − 1, µ3) ). Moreover for simplicity we set

L = 1 while the L dependence can be recovered replacing δ̂ by δ̂/L.

2-2-2 Couplings

(µ1 , µ2 , µ3) ∂ Couplings

(1 , 1 , 1) 6 Y 2
1 Y 2

2 Y 2
3 − 1

4
δ̂2 (Y1 Y2 Z1 Z2 + cycl.) + 1

4
δ̂3 Z1 Z2 Z3

4 (Y 2
1 Y2 Y3 Z1 + cycl.)− δ̂ (Y1 Y2 Z1 Z2 + cycl.) + 3

4
δ̂2 Z1 Z2 Z3

(1 , 1 , 0) 6 Y 2
1 Y 2

2 Y 2
3

4 Y1 Y2 Y
2
3 Z3 + δ̂ (Y 2

1 Z2
1 + Y 2

2 Z2
2 + 2Y1 Y2 Z1 Z2)

4 Y 2
2 Y3 Y1 Z2 + Y 2

1 Y2 Y3 Z1 − δ̂ Y2 Y1 Z1 Z2

2 Y 2
3 Z2

3 − Y 2
1 Z2

1 − Y 2
2 Z2

2 − 2Y1 Y2 Z2 Z1

2 Y 2
1 Z2

1 + Y 2
2 Z2

2 + 2Y1 Y2 Z2 Z1 + Y1 Y3 Z3 Z1 + Y2 Y3 Z2 Z3

−δ̂ Z1 Z2 Z3

(1 , 1 , µ3) 6 Y 2
1 Y 2

2 Y 2
3 + 1

4
δ̂2 µ3 (µ3 − 2) (Y1 Y3 Z1 Z3 + Y2 Y3 Z2 Z3)

+ 1
8
δ̂3 µ3 (µ3 − 2)2 Z1 Z2 Z3

4 Y1 Y2 Y
2
3 Z3 + 1

2
δ̂ (µ3 − 2) (Y1 Y3 Z1 Z3 + Y2 Y3 Z2 Z3)

+ 1
4
δ̂2 (µ3 − 2)2 Z1 Z2 Z3

4 Y1 Y
2
2 Y3 Z2 − 1

2
δ̂ µ3 Y2 Y3 Z2 Z3

4 Y 2
1 Y2 Y3 Z1 − 1

2
δ̂ µ3 Y1 Y3 Z1 Z3

2 Y 2
3 Z2

3 + Y1 Y3 Z1 Z3 + Y2 Y3 Z2 Z3 + 1
2
δ̂ (µ3 − 2)Z1 Z2 Z3

2 Y1 Y2 Z1 Z2 − 1
2
δ̂ µ3 Z1 Z2 Z3

(1 , 1 , 2) 6 Y 2
1 Y 2

2 Y 2
3

4 Y1 Y2 Y
2
3 Z3

4 Y1 Y
2
2 Y3Z2 + δ̂ Y 2

2 Z2
2

4 Y 2
1 Y2 Y3Z1 + δ̂ Y 2

1 Z2
1

2 −Y 2
1 Z2

1 − Y 2
2 Z2

2 + Y 2
3 Z2

3

2 Y2Z2 (Y2Z2 + Y3Z3)

2 Y1Z1 (Y1Z1 + Y3Z3)

2 Y1 Y2Z1Z2 − δ̂Z1Z2Z3

(1 , 0 , 0) 6 Y 2
1 Y 2

2 Y 2
3 − 1

2
δ̂ (3Y 2

1 Y2 Y3 Z1 + Y1 Y
2
2 Y3 Z2 + Y1 Y2 Y

2
3 Z3)

+ 1
4
δ̂2 (3Y1 Y2 Z1 Z2 + 3Y1 Y3 Z1 Z3 + Y2 Y3 Z2 Z3)− 3

8
δ̂3 Z1 Z2 Z3

(1 , 0 , µ3) 6 Y 2
1 Y 2

2 Y 2
3 + δ̂ (µ3 − 1)Y 2

1 Y2 Y3 Z1

− 1
4
δ̂2 (µ2

3 − 1) (Y 2
3 Z2

3 + 2Y1 Y3 Z1 Z3)

4 Y 2
1 Y2 Y3 Z1 + Y1 Y2 Y

2
3 Z3 − 1

2
δ̂ (µ3 − 1)Y 2

3 Z2
3

− 1
2
δ̂ (µ3 + 1)Y1 Y3 Z1 Z3

4 Y1 Y
2
2 Y3 Z2 + 1

2
δ̂ (µ3 − 3)Y1 Y2 Z1 Z2 − 1

2
δ̂ (µ3 + 1)Y2 Y3 Z2 Z3

− 1
4
δ̂2 (µ3 + 1) (µ3 − 3)Z1 Z2 Z3

(1 , µ2 , µ3) 6 Y 2
1 Y 2

2 Y 2
3 − 1

4
δ̂2 [(µ2 − µ3)2 − 1]Y 2

2 Z2
2

4 Y1 Y2 Y
2
3 Z3 + 1

2
δ̂ (µ2 − µ3 + 1)Y 2

2 Z2
2

4 Y1 Y
2
2 Y3 Z2 − 1

2
δ̂(µ2 − µ3 − 1)Y 2

2 Z2
2

4 Y 2
1 Y2 Y3 Z1 + 1

4
δ̂2 [(µ2 − µ3)2 − 1]Z1 Z2 Z3
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2 Y 2
3 Z2

3 − Y 2
2 Z2

2

2 Y 2
2 Z2

2 + Y2 Y3 Z2 Z3

2 Y1 Y3 Z1 Z3 − 1
2
δ̂ (µ2 − µ3 + 1)Z1 Z2 Z3

2 Y1 Y2 Z1 Z2 + 1
2
δ̂ (µ2 − µ3 − 1)Z1 Z2 Z3

(1 , µ3 + 1 , µ3) 6 Y 2
1 Y 2

2 Y 2
3

4 Y1 Y2 Y
2
3 Z3 + δ̂ Y 2

2 Z2
2

4 Y1 Y
2
2 Y3Z2

4 Y 2
1 Y2 Y3Z1

2 −Y 2
2 Z2

2 + Y 2
3 Z2

3

2 Y2Z2 (Y2Z2 + Y3Z3)

2 Y1 Y3Z1Z3 − δ̂Z1Z2Z3

2 Y1 Y2Z1Z2

2 Y 2
1 Z2

1

(1 , µ3 − 1 , µ3) 6 Y 2
1 Y 2

2 Y 2
3

4 Y1 Y2 Y
2
3 Z3

4 Y1 Y
2
2 Y3Z2 + δ̂ Y 2

2 Z2
2

4 Y 2
1 Y2 Y3Z1

2 −Y 2
2 Z2

2 + Y 2
3 Z2

3

2 Y2Z2 (Y2Z2 + Y3Z3)

2 Y1 Y3Z1Z3

2 Y1 Y2Z1Z2 − δ̂Z1Z2Z3

2 Y 2
1 Z2

1

3-3-2 Couplings

(µ1 , µ2 , µ3) ∂ Couplings

(2 , 2 , 1) 8 Y 3
1 Y 3

2 Y 2
3 + 1

4
δ̂2 Y 3

1 Y2 Z
2
1

− 3
8
δ̂3 (Y1 Z1 + Y2 Z2) Z3 (Y1 Z1 + Y3 Z3)

+ 3
8
δ̂4 Z1 Z2 Z

2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3 − 1

4
δ̂2 Z3 (Y2 Y3 Z2 Z3

+Y1 Z1 (Y2 Z2 + Y3 Z3)) +
1
4
δ̂3 Z1 Z2 Z

2
3

6 Y 2
1 Y 3

2 Y3 Z2,
1
2
δ̂ Y 3

1 Y2 Z
2
1

− 3
4
δ̂2 Z3

(

Y 2
1 Z2

1 + Y1 Y2 Z1 Z2 + Y2 Y3 Z2 Z3

)

, 3
8
δ̂3 Z1 Z2 Z

2
3

6 Y 3
1 Y 2

2 Y3 Z1 + 1
2
δ̂ Y 3

1 Y2 Z
2
1

− 3
4
δ̂2 Y1 Z1 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3) +

3
8
δ̂3 Z1 Z2 Z

2
3

4 Y1 Y2 Y
2
3 Z2

3 − 1
2
δ̂ Y3 (Y1 Z1 + Y2 Z2) Z2

3 + 1
4
δ̂2 Z1 Z2 Z

2
3

4 Y1 Y
2
2 Y3 Z2 Z3 − 1

2
δ̂ Y2 Z2 Z3 (Y1 Z1 + Y3 Z3) +

1
4
δ̂2 Z1 Z2 Z

2
3

4 −Y 3
1 Y2 Z

2
1 + Y1 Y

3
2 Z2

2 + 3
2
δ̂
(

Y 2
1 Z2

1 − Y 2
2 Z2

2

)

Z3

4 Y 2
1 Y2 Y3 Z1 Z3 − 1

2
δ̂ Y1 Z1 Z3 (Y2 Z2 + Y3 Z3) +

1
4
δ̂2 Z1 Z2 Z

2
3

4 Y 2
1 Y2 Z1 (Y1 Z1 + Y2 Z2)− 3

2
δ̂ Y1 Z1 (Y1 Z1 + Y2 Z2) Z3

(2 , 2 , 0) 8 Y 3
1 Y 3

2 Y 2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y2 Z2)− δ̂ Y 2
1 Y 2

2 Z1 Z2

4 Y1 Y2 Y
2
3 Z2

3 + δ̂ (Y1 Z1 + Y2 Z2) 2 Z3

4 Y1 Y2 Y3 (Y1 Z1 + Y2 Z2) Z3 − δ̂ Y1 Y2 Z1 Z2 Z3

4 Y1 Y2 (Y1 Z1 + Y2 Z2) 2 − δ̂ (Y1 Z1 + Y2 Z2) 2 Z3

2 Z3

(

−Y 2
1 Z2

1 − 2Y1 Y2 Z1 Z2 − Y 2
2 Z2

2 + Y 2
3 Z2

3

)

2 (Y1 Z1 + Y2 Z2) Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3)− δ̂ Z1 Z2 Z
2
3

(2 , 1 , 1) 8 Y 3
1 Y 3

2 Y 2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3

6 Y 2
1 Y 3

2 Y3 Z2 − δ̂ Y 2
1 Y 2

2 Z1 Z2 + 2δ̂2 Y2 Z2 (Y1 Z1 + Y2 Z2) Z3

6 Y 3
1 Y 2

2 Y3 Z1 + 2δ̂ Y 2
1 Y2 Z1 (Y1 Z1 + Y2 Z2)
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−2δ̂2 Y1 Z1 Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

4 −Y1 Y2

(

Y 2
1 Z2

1 + Y1 Y2 Z1 Z2 − Y 2
3 Z2

3

)

+ 2δ̂ Y1 Z1 (Y1 Z1 + Y2 Z2) Z3

4 Y1 Y
2
2 Y3 Z2 Z3 + δ̂ Y 2

2 Z2
2 Z3

4 Y1 Y
2
2 Z2 (Y1 Z1 + Y2 Z2)− 2δ̂ Y2 Z2 (Y1 Z1 + Y2 Z2) Z3

4 Y 2
1 Y2 Z1 (Y1 Z1 + Y2 Z2 + Y3 Z3)

−δ̂ Y1 Z1 Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3)

2 Z3

(

Y 2
1 Z2

1 − Y 2
2 Z2

2 + 2Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

2 Y2 Z2 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3)− δ̂ Z1 Z2 Z
2
3

(2 , 1 , 0) 8 Y 3
1 Y 3

2 Y 2
3 − δ̂ Y 3

1 Y 2
2 Y3 Z1

− 1
4
δ̂2 Y1 Y2

(

Y 2
1 Z2

1 + 3Y1 Y3 Z1 Z3 + 3Y3 Z3 (Y2 Z2 + Y3 Z3)
)

3
8
δ̂3 Z3

(

Y 2
1 Z2

1 + Y2 Y3 Z2 Z3 + 3Y1 Z1 (Y2 Z2 + Y3 Z3)
)

− 9
16

δ̂4 Z1 Z2 Z
2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3 − 1

2
δ̂ Y1 Y2 Y3 Z3 (3Y1 Z1 + Y2 Z2 + Y3 Z3)

1
4
δ̂2 Z3 (Y2 Y3 Z2 Z3 + 3Y1 Z1 (Y2 Z2 + Y3 Z3))− 3

8
δ̂3 Z1 Z2 Z

2
3

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y2 Z2)

− 1
2
δ̂ Y1 Y2

(

Y 2
1 Z2

1 + 3Y2 Y3 Z2 Z3 + 3Y1 Z1 (Y2 Z2 + Y3 Z3)
)

+ 3
4
δ̂2 Y1 Z1 (Y1 Z1 + 3Y2 Z2) Z3

(2 , 0 , 1) 8 Y 3
1 Y 3

2 Y 2
3 + 3

2
δ̂ Y 3

1 Y 2
2 Y3 Z1

− 3
4
δ̂2 Y1 Y2

(

2Y 2
1 Z2

1 + 10Y1 Y3 Z1 Z3 + 5Y 2
3 Z2

3

)

+ 15
8
δ̂3 Y1 Z1 Z3 (2Y1 Z1 + 3Y3 Z3)

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y3 Z3)

− 1
2
δ̂ Y1 Y2

(

Y 2
1 Z2

1 + 8Y1 Y3 Z1 Z3 + 3Y 2
3 Z2

3

)

+ 1
4
δ̂2 Y1 Z1 Z3 (5Y1 Z1 + 9Y3 Z3)

6 Y 2
1 Y 3

2 Y3 Z2 − 3
2
δ̂ Y1 Y

2
2 Z2 (Y1 Z1 + 2Y3 Z3)

3
4
δ̂2 Y2 Z2 Z3 (6Y1 Z1 + Y3 Z3)− 9

8
δ̂3 Z1 Z2 Z

2
3

(2 , 0 , 0) 8 Y 3
1 Y 3

2 Y 2
3 + 2δ̂ Y 2

1 Y 3
2 Y3 Z2 + 2δ̂2 Y1 Y

3
2 Z2

2

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y2 Z2 + Y3 Z3) + δ̂ Y1 Y2

(

Y 2
2 Z2

2 − 2Y1 Y3 Z1 Z3

)

4 Y1 Y2 (Y1 Z1 + Y2 Z2 + Y3 Z3) 2

−2δ̂ Y1 Z1 Z3 (Y1 Z1 + 2Y2 Z2 + Y3 Z3)

(1 , 1 , 1) 8 Y 3
1 Y 3

2 Y 2
3 − 1

4
δ̂2 Y1 Y2 (3Y3 Z3 (2Y2 Z2 + 5Y3 Z3)

+Y1 Z1 (Y2 Z2 + 6Y3 Z3)) +
3
4
δ̂3 Z3 (3Y2 Y3 Z2 Z3

+Y1 Z1 (2Y2 Z2 + 3Y3 Z3))− 21
16

δ̂4 Z1 Z2 Z
2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3 − 1

2
δ̂ Y1 Y2 Y3 Z3 (Y1 Z1 + Y2 Z2 + 3Y3 Z3)

1
4
δ̂2 Z3 (3Y2 Y3 Z2 Z3 + Y1 Z1 (Y2 Z2 + 3Y3 Z3))− 3

8
δ̂3 Z1 Z2 Z

2
3

6 Y 2
1 Y 3

2 Y3 Z2 − 1
2
δ̂ Y1 Y

2
2 Z2 (Y1 Z1 + 6Y3 Z3)

+ 3
4
δ̂2 Y2 Z2 Z3 (2Y1 Z1 + Y3 Z3)− 3

8
δ̂3 Z1 Z2 Z

2
3

6 Y 3
1 Y 2

2 Y3 Z1 − 1
2
δ̂ Y 2

1 Y2 Z1 (Y2 Z2 + 6Y3 Z3)

+ 3
4
δ̂2 Y1 Z1 Z3 (2Y2 Z2 + Y3 Z3)− 3

8
δ̂3 Z1 Z2 Z

2
3

(1 , 1 , 0) 8 Y 3
1 Y 3

2 Y 2
3

6 Y 2
1 Y 2

2 Y 2
3 Z3

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y2 Z2)

+δ̂ Y1 Y2

(

2Y 2
1 Z2

1 + 3Y1 Y2 Z1 Z2 + 2Y 2
2 Z2

2

)

−2δ̂2 (Y1 Z1 + Y2 Z2) Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3) + 2δ̂3 Z1 Z2 Z
2
3

4 −Y1 Y2

(

Y 2
1 Z2

1 + 2Y1 Y2 Z1 Z2 + Y 2
2 Z2

2 − Y 2
3 Z2

3

)

+2δ̂ (Y1 Z1 + Y2 Z2) 2 Z3

4 Y1 Y2 (Y1 Z1 + Y2 Z2) (Y1 Z1 + Y2 Z2 + Y3 Z3)

−δ̂ Z3

(

2Y 2
1 Z2

1 + Y2 Z2 (2Y2 Z2 + Y3 Z3) + Y1 Z1 (5Y2 Z2 + Y3 Z3)
)

+ δ̂2 Z1 Z2 Z
2
3

2 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3) 2 − 2δ̂ Z1 Z2 Z
2
3

(1 , 0 , 1) 8 Y 3
1 Y 3

2 Y 2
3 + 3δ̂ Y 3

1 Y 2
2 Y3 Z1 + 6δ̂2

(

Y 3
1 Y2 Z

2
1 − Y1 Y

3
2 Z2

2

)

−6δ̂3 Z3

(

3Y 2
1 Z2

1 − 3Y 2
2 Z2

2 + 3Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y3 Z3) + 2δ̂
(

Y 3
1 Y2 Z

2
1 − Y1 Y

3
2 Z2

2

)

−2δ̂2 Z3

(

3Y 2
1 Z2

1 − 3Y 2
2 Z2

2 + 3Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

6 Y 2
1 Y 3

2 Y3 Z2 + δ̂ Y1 Y
2
2 Z2 (3Y1 Z1 + 4Y2 Z2)

– 30 –



J
H
E
P
0
7
(
2
0
1
2
)
0
4
1

−6δ̂2 Y2 Z2 Z3 (2Y1 Z1 + 2Y2 Z2 + Y3 Z3) + 6δ̂3 Z1 Z2 Z
2
3

4 Y1 Y2

(

Y 2
1 Z2

1 − Y 2
2 Z2

2 + 2Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

−δ̂ Z3

(

3Y 2
1 Z2

1 − 3Y 2
2 Z2

2 + 4Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

4 Y1 Y
2
2 Z2 (Y1 Z1 + Y2 Z2 + Y3 Z3)

−δ̂ Y2 Z2 Z3 (4Y1 Z1 + 3Y2 Z2 + 2Y3 Z3) + 2δ̂2 Z1 Z2 Z
2
3

(1 , 0 , 0) 8 Y 3
1 Y 3

2 Y 2
3 − 1

2
δ̂ Y 2

1 Y 2
2 Y3 (3Y1 Z1 + Y2 Z2 + 6Y3 Z3)

+ 3
4
δ̂2 Y1 Y2 (Y3 Z3 (2Y2 Z2 + Y3 Z3) + Y1 Z1 (Y2 Z2 + 6Y3 Z3))

− 3
8
δ̂3 Z3 (Y2 Y3 Z2 Z3 + 3Y1 Z1 (2Y2 Z2 + Y3 Z3)) +

9
16

δ̂4 Z1 Z2 Z
2
3

(0 , 0 , 1) 8 Y 3
1 Y 3

2 Y 2
3 − 1

2
δ̂ Y 2

1 Y 2
2 Y3 (Y1 Z1 + Y2 Z2 + 10Y3 Z3)

1
4
δ̂2 Y1 Y2 (5Y3 Z3 (2Y2 Z2 + 3Y3 Z3) + Y1 Z1 (Y2 Z2 + 10Y3 Z3))

− 5
8
δ̂3 Z3 (3Y2 Y3 Z2 Z3 + Y1 Z1 (2Y2 Z2 + 3Y3 Z3)) +

15
16

δ̂4 Z1 Z2 Z
2
3

(2 , 2 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 + 1

8
δ̂3 Y3 (Y1 Z1 + Y2 Z2) Z2

3µ3

(

−4 + µ2
3

)

+ 1
16

δ̂4 Z1 Z2 Z
2
3 (−2 + µ3) 2µ3 (2 + µ3)

6 Y 2
1 Y 2

2 Y 2
3 Z3 + 1

4
δ̂2 Y3 (Y1 Z1 + Y2 Z2) Z2

3 (−2 + µ3)µ3

+ 1
8
δ̂3 Z1 Z2 Z

2
3 (−2 + µ3) 2µ3

6 Y 2
1 Y 3

2 Y3 Z2 − 1
4
δ̂2 Y2 Y3 Z2 Z

2
3µ3 (2 + µ3)

6 Y 3
1 Y 2

2 Y3 Z1 − 1
4
δ̂2 Y1 Y3 Z1 Z

2
3µ3 (2 + µ3)

4 Y1 Y2 Y
2
3 Z2

3 + 1
2
δ̂ Y3 (Y1 Z1 + Y2 Z2) Z2

3 (−2 + µ3)

+ 1
4
δ̂2 Z1 Z2 Z

2
3 (−2 + µ3) 2

4 Y1 Y
2
2 Y3 Z2 Z3 − 1

2
δ̂ Y2 Y3 Z2 Z

2
3µ3

4 Y1 Y
3
2 Z2

2 − 1
2
δ̂ Y 2

2 Z2
2 Z3 (2 + µ3)

4 Y 2
1 Y2 Y3 Z1 Z3 − 1

2
δ̂ Y1 Y3 Z1 Z

2
3µ3

4 Y 2
1 Y 2

2 Z1 Z2 − 1
4
δ̂2 Z1 Z2 Z

2
3µ3 (2 + µ3)

4 Y 3
1 Y2 Z

2
1 − 1

2
δ̂ Y 2

1 Z2
1 Z3 (2 + µ3)

2 Y3 Z
2
3 (Y1 Z1 + Y2 Z2 + Y3 Z3) +

1
2
δ̂ Z1 Z2 Z

2
3 (−2 + µ3)

2 Y1 Y2 Z1 Z2 Z3 − 1
2
δ̂ Z1 Z2 Z

2
3µ3

(2 , 1 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 − 3

4
δ̂2 Y 3

1 Y2 Z
2
1

(

−1 + µ2
3

)

− 1
8
δ̂3 Z3

(

−3Y 2
1 Z2

1 + Y 2
3 Z2

3

)

(−1 + µ3) (1 + µ3) (3 + µ3)

6 Y 2
1 Y 2

2 Y 2
3 Z3 − δ̂ Y 3

1 Y2 Z
2
1 (−1 + µ3)

+ 1
4
δ̂2 Z3 (−1 + µ3)

(

−Y 2
3 Z2

3 (1 + µ3) + 2Y 2
1 Z2

1 (3 + µ3)
)

6 Y 2
1 Y 3

2 Y3 Z2,
1
4
δ̂2 Y2 Z2 Z3 (1 + µ3) (2Y1 Z1 (−3 + µ3)− Y3 Z3 (3 + µ3))

− 1
4
δ̂3 Z1 Z2 Z

2
3 (−3 + µ3) (1 + µ3) 2

6 Y 3
1 Y 2

2 Y3 Z1 + δ̂ Y 3
1 Y2 Z

2
1 (1 + µ3)

− 1
4
δ̂2 Y1 Z1 Z3 (2Y1 Z1 + Y3 Z3) (1 + µ3) (3 + µ3)

4 Y1 Y2

(

−Y 2
1 Z2

1 + Y 2
3 Z2

3

)

+ 1
2
δ̂ Z3

(

−Y 2
3 Z2

3 (−1 + µ3) + Y 2
1 Z2

1 (3 + µ3)
)

4 Y1 Y
2
2 Y3 Z2 Z3 − 1

2
δ̂ Y2 Z2 Z3 (−Y1 Z1 (−3 + µ3) + Y3 Z3 (1 + µ3))

− 1
4
δ̂2 Z1 Z2 Z

2
3 (−3 + µ3) (1 + µ3)

4 Y 2
1 Y2 Z1 (Y1 Z1 + Y3 Z3)

− 1
2
δ̂ Y1 Z1 Z3 (Y3 Z3 (1 + µ3) + Y1 Z1 (3 + µ3))

4 Y 2
1 Y 2

2 Z1 Z2 − δ̂ Y1 Y2 Z1 Z2 Z3 (1 + µ3)

+ 1
4
δ̂2 Z1 Z2 Z

2
3

(

−1 + µ2
3

)

(2 , 0 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 + 3

2
δ̂ Y 3

1 Y 2
2 Y3 Z1µ3 + 3

4
δ̂2 Y 3

1 Y2 Z
2
1µ3 (2 + µ3)

− 1
8
δ̂3 Z3

(

3Y 2
1 Z2

1 + 3Y1 Y3 Z1 Z3 + Y 2
3 Z2

3

)

µ3 (2 + µ3) (4 + µ3)

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y3 Z3) + δ̂ Y 2
1 Y2 Z1 (Y3 Z3 (−2 + µ3) + Y1 Z1µ3)

− 1
4
δ̂2 Z3µ3

(

3Y1 Y3 Z1 Z3 (2 + µ3) + Y 2
3 Z2

3 (2 + µ3) + 2Y 2
1 Z2

1 (4 + µ3)
)

6 Y 2
1 Y 3

2 Y3 Z2 + 1
2
δ̂ Y1 Y

2
2 Z2 (Y1 Z1 (−4 + µ3)− 2Y3 Z3 (2 + µ3))

1
4
δ̂2 Y2 Z2 Z3 (2 + µ3) (−2Y1 Z1 (−4 + µ3) + Y3 Z3µ3)

+ 1
8
δ̂3 Z1 Z2 Z

2
3 (−4 + µ3)µ3 (2 + µ3)

4 Y1 Y2 (Y1 Z1 + Y3 Z3) 2

− 1
2
δ̂ Z3 (Y1 Z1 + Y3 Z3) (Y3 Z3µ3 + Y1 Z1 (4 + µ3))

(1 , 1 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 + 3

4
δ̂2 Y1 Y2 Y3 (Y1 Z1 + Y2 Z2) Z3µ3 (2 + µ3)
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(
2
0
1
2
)
0
4
1

− 1
8
δ̂3 Z3µ3 (2 + µ3) (3Y1 Z1 (−Y2 Z2 (−2 + µ3) + Y3 Z3 (2 + µ3))

+Y3 Z3 (3Y2 Z2 (2 + µ3) + Y3 Z3 (4 + µ3)))

− 3
16

δ̂4 Z1 Z2 Z
2
3 (−2 + µ3)µ3 (2 + µ3) 2

6 Y 2
1 Y 2

2 Y 2
3 Z3 + δ̂ Y1 Y2 Y3 (Y1 Z1 + Y2 Z2) Z3µ3

− 1
4
δ̂2 Z3µ3 (Y3 Z3 (2Y2 Z2 + Y3 Z3) (2 + µ3)

+2Y1 Z1 (−Y2 Z2 (−2 + µ3) + Y3 Z3 (2 + µ3)))− 1
4
δ̂3 Z1 Z2 Z

2
3µ3

(

−4 + µ2
3

)

6 Y 2
1 Y 3

2 Y3 Z2 − δ̂ Y1 Y
2
2 Y3 Z2 Z3 (2 + µ3) +

1
4
δ̂2 Y2 Y3 Z2 Z

2
3µ3 (2 + µ3)

6 Y 3
1 Y 2

2 Y3 Z1 − δ̂ Y 2
1 Y2 Y3 Z1 Z3 (2 + µ3) +

1
4
δ̂2 Y1 Y3 Z1 Z

2
3µ3 (2 + µ3)

4 Y1 Y2 Y3 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3)

− 1
2
δ̂ Z3 (Y3 Z3 (Y3 Z3µ3 + Y2 Z2 (2 + µ3))

+Y1 Z1 (−Y2 Z2 (−2 + µ3) + Y3 Z3 (2 + µ3)))− 1
4
δ̂2 Z1 Z2 Z

2
3

(

−4 + µ2
3

)

4 Y 2
1 Y 2

2 Z1 Z2 − δ̂ Y1 Y2 Z1 Z2 Z3 (2 + µ3) +
1
4
δ̂2 Z1 Z2 Z

2
3µ3 (2 + µ3)

(1 , 0 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 + 3

2
δ̂ Y 3

1 Y 2
2 Y3 Z1 (1 + µ3)

− 3
4
δ̂2 Y1 Y2 Y3 Z3 (2Y1 Z1 + Y3 Z3) (1 + µ3) (3 + µ3)

+ 1
8
δ̂3 Y3 Z

2
3 (1 + µ3) (3 + µ3) (2Y3 Z3 (−1 + µ3) + 3Y1 Z1 (1 + µ3))

6 Y 2
1 Y 2

2 Y3 (Y1 Z1 + Y3 Z3)

−δ̂ Y1 Y2 Y3 Z3 (Y3 Z3 (1 + µ3) + Y1 Z1 (3 + µ3))

+ 1
4
δ̂2 Y3 Z

2
3 (1 + µ3) (Y3 Z3 (−1 + µ3) + Y1 Z1 (3 + µ3))

6 Y 2
1 Y 3

2 Y3 Z2 + 1
2
δ̂ Y1 Y

2
2 Z2 (Y1 Z1 (−3 + µ3)− 2Y3 Z3 (3 + µ3))

+ 1
4
δ̂2 Y2 Z2 Z3 (3 + µ3) (−2Y1 Z1 (−3 + µ3) + Y3 Z3 (1 + µ3))

+ 1
8
δ̂3 Z1 Z2 Z

2
3 (−3 + µ3) (1 + µ3) (3 + µ3)

(2 , µ2 , 1) 8 Y 3
1 Y 2

2 Y 3
3 − 1

4
δ̂2 Y 3

1 Y3 Z
2
1 (−3 + µ2) (−1 + µ2)

− 1
8
δ̂3 Z2

(

Y 2
1 Z2

1 + Y3 (Y1 Z1 + Y2 Z2) Z3

)

(−5 + µ2) (−3 + µ2) (−1 + µ2)

− 1
16

δ̂4 Z1 Z
2
2 Z3 (−5 + µ2) (−3 + µ2) 2 (−1 + µ2)

6 Y 2
1 Y2 Y

3
3 Z3 − 1

2
δ̂ Y 3

1 Y3 Z
2
1 (−3 + µ2)

− 1
4
δ̂2 Z2

(

Y 2
1 Z2

1 + Y3 (Y1 Z1 + Y2 Z2) Z3

)

(−5 + µ2) (−3 + µ2)

− 1
8
δ̂3 Z1 Z

2
2 Z3 (−5 + µ2) (−3 + µ2) 2

6 Y 2
1 Y 2

2 Y 2
3 Z2

+ 1
4
δ̂2 Y3 Z2 (Y1 Z1 + Y2 Z2) Z3 (−3 + µ2) (−1 + µ2)

+ 1
8
δ̂3 Z1 Z

2
2 Z3 (−3 + µ2) 2 (−1 + µ2)

6 Y 3
1 Y2 Y

2
3 Z1 + 1

2
δ̂ Y 3

1 Y3 Z
2
1 (−1 + µ2)

+ 1
4
δ̂2 Y1 Z1 Z2 (Y1 Z1 + Y3 Z3) (−5 + µ2) (−1 + µ2)

4 −Y 3
1 Y3 Z

2
1 + Y1 Y

3
3 Z2

3

− 1
2
δ̂ Z2

(

Y 2
1 Z2

1 + Y3 (Y1 Z1 + Y2 Z2) Z3

)

(−5 + µ2)

− 1
4
δ̂2 Z1 Z

2
2 Z3 (−5 + µ2) (−3 + µ2)

4 Y1 Y2 Y
2
3 Z2 Z3 + 1

2
δ̂ Y3 Z2 (Y1 Z1 + Y2 Z2) Z3 (−3 + µ2)

+ 1
4
δ̂2 Z1 Z

2
2 Z3 (−3 + µ2) 2

4 Y1 Y
2
2 Y3 Z

2
2 − 1

2
δ̂ Y2 Y3 Z

2
2 Z3 (−1 + µ2)

4 Y 2
1 Y3 Z1 (Y1 Z1 + Y3 Z3) +

1
2
δ̂ Y1 Z1 Z2 (Y1 Z1 + Y3 Z3) (−5 + µ2)

4 Y 2
1 Y2 Y3 Z1 Z2 − 1

2
δ̂ Y1 Y3 Z1 Z2 Z3 (−1 + µ2)

2 Y3 Z2 Z3 (Y1 Z1 + Y2 Z2 + Y3 Z3) +
1
2
δ̂ Z1 Z

2
2 Z3 (−3 + µ2)

2 Y1 Y2 Z1 Z
2
2 − 1

2
δ̂ Z1 Z

2
2 Z3 (−1 + µ2)

(1 , µ2 , 1) 8 Y 3
1 Y 2

2 Y 3
3 + 1

4
δ̂2 Y1 Y3 (−2 + µ2)

(

−3Y 2
2 Z2

2 (−4 + µ2) + Y1 Y3 Z1 Z3µ2

)

+ 1
4
δ̂3 Y3 Z2 Z3 (Y1 Z1 + 2Y2 Z2 + Y3 Z3) (−4 + µ2) (−2 + µ2)µ2

+ 1
16

δ̂4 Z1 Z
2
2 Z3 (−4 + µ2) (−2 + µ2) 2µ2

6 Y 2
1 Y2 Y

3
3 Z3 + 1

2
δ̂ Y1 Y3

(

−2Y 2
2 Z2

2 (−4 + µ2) + Y1 Y3 Z1 Z3 (−2 + µ2)
)

+ 1
4
δ̂2 Y3 Z2 Z3 (−4 + µ2) (2Y1 Z1 (−2 + µ2)

+2Y3 Z3 (−2 + µ2) + Y2 Z2 (−2 + 3µ2))

+ 1
8
δ̂3 Z1 Z

2
2 Z3 (−4 + µ2) (−2 + µ2) 2

6 Y 2
1 Y 2

2 Y 2
3 Z2 + δ̂ Y1 Y

2
2 Y3 Z

2
2 (−2 + µ2)

− 1
4
δ̂2 Y3 Z2 Z3 (2Y2 Z2 + Y3 Z3) (−2 + µ2)µ2

6 Y 3
1 Y2 Y

2
3 Z1 − 1

2
δ̂ Y 2

1 Y 2
3 Z1 Z3µ2
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− 1
4
δ̂2 Y1 Y2 Z1 Z

2
2 (−6 + µ2) (−4 + µ2) +

1
8
δ̂3 Z1 Z

2
2 Z3 (−6 + µ2) (−4 + µ2)µ2

4 Y1 Y3

(

−Y 2
2 Z2

2 + Y3 Z3 (Y1 Z1 + Y3 Z3)
)

+δ̂ Y3 Z2 Z3 (Y1 Z1 (−4 + µ2) + Y3 Z3 (−4 + µ2) + Y2 Z2 (−2 + µ2))

+ 1
4
δ̂2 Z1 Z

2
2 Z3 (−4 + µ2) (−2 + µ2)

4 Y1 Y2 Y3 Z2 (Y2 Z2 + Y3 Z3)

− 1
2
δ̂ Y3 Z2 Z3 (Y3 Z3 (−2 + µ2) + Y2 Z2µ2)

4 Y 2
1 Y2 Y3 Z1 Z2 + 1

2
δ̂ Y1 Z1 Z2 (Y2 Z2 (−4 + µ2)− Y3 Z3µ2)

− 1
4
δ̂2 Z1 Z

2
2 Z3 (−4 + µ2)µ2

(0 , µ2 , 1) 8 Y 3
1 Y 2

2 Y 3
3 + 3

2
δ̂ Y 2

1 Y 2
2 Y 2

3 Z2 (−3 + µ2)

− 1
4
δ̂2 Y1 Y3 (−1 + µ2)

(

−2Y 2
2 Z2

2 (−5 + µ2)

+2Y2 Y3 Z2 Z3 (1 + µ2) + Y 2
3 Z2

3 (1 + µ2)
)

− 1
8
δ̂3 Y3 Z2 Z3 (Y3 Z3 (−7 + µ2) + 2Y2 Z2 (−5 + µ2))

(

−1 + µ2
2

)

6 Y 2
1 Y2 Y

2
3 (Y2 Z2 + Y3 Z3)

+ 1
2
δ̂ Y1 Y3

(

−8Y2 Y3 Z2 Z3 + Y 2
2 Z2

2 (−5 + µ2)− Y 2
3 Z2

3 (−1 + µ2)
)

− 1
4
δ̂2 Y3 Z2 Z3 (Y3 Z3 (−7 + µ2) (−1 + µ2) + Y2 Z2 (−5 + µ2) (1 + µ2))

6 Y 3
1 Y2 Y

2
3 Z1 − 1

2
δ̂ Y 2

1 Y3 Z1 (−2Y2 Z2 (−5 + µ2) + Y3 Z3 (1 + µ2))

+ 1
4
δ̂2 Y1 Z1 Z2 (−5 + µ2) (Y2 Z2 (−3 + µ2)− 2Y3 Z3 (1 + µ2))

− 1
8
δ̂3 Z1 Z

2
2 Z3 (−5 + µ2) (−3 + µ2) (1 + µ2)

(2 , µ2 , 0) 8 Y 3
1 Y 2

2 Y 3
3 + δ̂ Y 3

1 Y2 Y
2
3 Z1 (−2 + µ2) +

1
4
δ̂2 Y 3

1 Y3 Z
2
1 (−2 + µ2)µ2

+ 1
8
δ̂3 Z2 (Y1 Z1 + Y3 Z3) 2 (−4 + µ2) (−2 + µ2)µ2

6 Y 2
1 Y2 Y

2
3 (Y1 Z1 + Y3 Z3)

+ 1
2
δ̂ Y 2

1 Y3 Z1 (Y3 Z3 (−4 + µ2) + Y1 Z1 (−2 + µ2))

+ 1
4
δ̂2 Z2 (Y1 Z1 + Y3 Z3) 2 (−4 + µ2) (−2 + µ2)

6 Y 2
1 Y 2

2 Y 2
3 Z2 + δ̂ Y 2

1 Y2 Y3 Z1 Z2 (−2 + µ2)

− 1
4
δ̂2 Y3 Z2 Z3 (2Y1 Z1 + Y3 Z3) (−2 + µ2)µ2

4 Y1 Y3 (Y1 Z1 + Y3 Z3) 2 + 1
2
δ̂ Z2 (Y1 Z1 + Y3 Z3) 2 (−4 + µ2)

4 Y1 Y2 Y3 Z2 (Y1 Z1 + Y3 Z3)− 1
2
δ̂ Y3 Z2 Z3 (Y3 Z3 (−2 + µ2) + Y1 Z1µ2)

4 Y1 Y
2
2 Y3 Z

2
2 + 1

2
δ̂ Y2 Z

2
2 (Y1 Z1 (−4 + µ2)− Y3 Z3µ2)− 1

4
δ̂2 Z1 Z

2
2 Z3 (−4 + µ2)µ2

(1 , µ2 , 0) 8 Y 3
1 Y 2

2 Y 3
3 + δ̂ Y 3

1 Y2 Y
2
3 Z1 (−1 + µ2)

− 1
4
δ̂2 Y1 Y3 (−1 + µ2)

(

2Y 2
2 Z2

2 (−5 + µ2) + Y3 Z3 (2Y1 Z1 + Y3 Z3) (1 + µ2)
)

− 1
4
δ̂3 Y2 Z

2
2 (−5 + µ2) (−1 + µ2) (Y1 Z1 (−3 + µ2)− Y3 Z3 (1 + µ2))

+ 1
8
δ̂4 Z1 Z

2
2 Z3 (−5 + µ2) (−3 + µ2) (−1 + µ2) (1 + µ2)

6 Y 2
1 Y2 Y

2
3 (Y1 Z1 + Y3 Z3)

− 1
2
δ̂ Y1 Y3

(

Y 2
2 Z2

2 (−5 + µ2) + Y3 Z3 (Y3 Z3 (−1 + µ2) + Y1 Z1 (1 + µ2))
)

− 1
4
δ̂2 Y2 Z

2
2 (−5 + µ2) (Y1 Z1 (−3 + µ2)− Y3 Z3 (1 + µ2))

+ 1
8
δ̂3 Z1 Z

2
2 Z3 (−5 + µ2) (−3 + µ2) (1 + µ2)

6 Y 2
1 Y 2

2 Y 2
3 Z2 + δ̂ Y1 Y2 Y3 Z2 (Y1 Z1 + Y2 Z2) (−1 + µ2)

− 1
4
δ̂2 Z2 (−1 + µ2) (Y3 Z3 (2Y2 Z2 + Y3 Z3) (1 + µ2)

+2Y1 Z1 (−Y2 Z2 (−3 + µ2) + Y3 Z3 (1 + µ2)))

− 1
4
δ̂3 Z1 Z

2
2 Z3 (−3 + µ2) (−1 + µ2) (1 + µ2)

4 Y1 Y2 Y3 Z2 (Y1 Z1 + Y2 Z2 + Y3 Z3)

− 1
2
δ̂ Z2 (Y3 Z3 (Y3 Z3 (−1 + µ2) + Y2 Z2 (1 + µ2))

+Y1 Z1 (−Y2 Z2 (−3 + µ2) + Y3 Z3 (1 + µ2)))

− 1
4
δ̂2 Z1 Z

2
2 Z3 (−3 + µ2) (1 + µ2)

(2 , µ2 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 + 1

8
δ̂3 Y 2

2 Z2
2 Z3 (−4 + µ2 − µ3) (−2 + µ2 − µ3) (µ2 − µ3)

6 Y 2
1 Y 2

2 Y 2
3 Z3 − 1

4
δ̂2 Y 2

2 Z2
2 Z3 (−2 + µ2 − µ3) (µ2 − µ3)

6 Y 2
1 Y 3

2 Y3 Z2 + 1
4
δ̂2 Y 2

2 Z2
2 Z3 (−4 + µ2 − µ3) (−2 + µ2 − µ3)

6 Y 3
1 Y 2

2 Y3 Z1 − 1
8
δ̂3 Z1 Z2 Z

2
3 (−4 + µ2 − µ3) (−2 + µ2 − µ3) (µ2 − µ3)

4 Y1 Y2 Y
2
3 Z2

3 + 1
2
δ̂ Y 2

2 Z2
2 Z3 (µ2 − µ3)

4 Y1 Y
2
2 Y3 Z2 Z3 + 1

2
δ̂ Y 2

2 Z2
2 Z3 (2− µ2 + µ3)

4 Y1 Y
3
2 Z2

2 + 1
2
δ̂ Y 2

2 Z2
2 Z3 (−4 + µ2 − µ3)

4 Y 2
1 Y2 Y3 Z1 Z3 + 1

4
δ̂2 Z1 Z2 Z

2
3 (−2 + µ2 − µ3) (µ2 − µ3)
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4 Y 2
1 Y 2

2 Z1 Z2 − 1
4
δ̂2 Z1 Z2 Z

2
3 (−4 + µ2 − µ3) (−2 + µ2 − µ3)

4 Y 3
1 Y2 Z

2
1 + 1

2
δ̂ Y 2

1 Z2
1 Z3 (−4 + µ2 − µ3)

2 −Y 2
2 Z2

2 Z3 + Y 2
3 Z3

3

2 Y2 Z2 Z3 (Y2 Z2 + Y3 Z3)

2 Y1 Y3 Z1 Z
2
3 + 1

2
δ̂ Z1 Z2 Z

2
3 (−µ2 + µ3)

2 Y1 Y2 Z1 Z2 Z3 + 1
2
δ̂ Z1 Z2 Z

2
3 (−2 + µ2 − µ3)

(1 , µ2 , µ3) 8 Y 3
1 Y 3

2 Y 2
3 − 3

4
δ̂2 Y1 Y

3
2 Z2

2 (−3 + µ2 − µ3) (−1 + µ2 − µ3)

− 1
4
δ̂3 Y2 Z2 Z3 (2Y2 Z2 + Y3 Z3) (−5 + µ2 − µ3) (−3 + µ2 − µ3) (−1 + µ2 − µ3)

6 Y 2
1 Y 2

2 Y 2
3 Z3 + δ̂ Y1 Y

3
2 Z2

2 (−1 + µ2 − µ3)

+ 1
4
δ̂2 Y2 Z2 Z3 (Y2 Z2 (−13 + 3µ2 − 3µ3) + 2Y3 Z3 (−3 + µ2 − µ3)) (−1 + µ2 − µ3)

6 Y 2
1 Y 3

2 Y3 Z2 + δ̂ Y1 Y
3
2 Z2

2 (3− µ2 + µ3)

− 1
4
δ̂2 Y2 Z2 Z3 (2Y2 Z2 + Y3 Z3) (−5 + µ2 − µ3) (−3 + µ2 − µ3)

6 Y 3
1 Y 2

2 Y3 Z1 + 1
4
δ̂2 Y1 Z1 Z3 (−3 + µ2 − µ3) (2Y2 Z2 (1 + µ2 − µ3)

+Y3 Z3 (5− µ2 + µ3)) +
1
4
δ̂3 Z1 Z2 Z

2
3 (1 + µ2 − µ3) (3− µ2 + µ3) 2

4 Y1 Y2

(

−Y 2
2 Z2

2 + Y 2
3 Z2

3

)

+ δ̂ Y2 Z2 Z3 (Y3 Z3 (1− µ2 + µ3) + Y2 Z2 (3− µ2 + µ3))

(µ1 , µ2 , 1) 8 Y 2
1 Y 3

2 Y 3
3 − 1

4
δ̂2 Y 3

2 Y3 Z
2
2

(

−1 + (µ1 − µ2) 2
)

6 Y1 Y
2
2 Y 3

3 Z3 + 1
2
δ̂ Y 3

2 Y3 Z
2
2 (1 + µ1 − µ2)

6 Y1 Y
3
2 Y 2

3 Z2 + 1
2
δ̂ Y 3

2 Y3 Z
2
2 (1− µ1 + µ2)

6 Y 2
1 Y 2

2 Y 2
3 Z1 − 1

4
δ̂2 Y 2

2 Z1 Z
2
2

(

−1 + (µ1 − µ2) 2
)

4 −Y 3
2 Y3 Z

2
2 + Y2 Y

3
3 Z2

3

4 Y 2
2 Y3 Z2 (Y2 Z2 + Y3 Z3)

4 Y1 Y2 Y
2
3 Z1 Z3 + 1

2
δ̂ Y 2

2 Z1 Z
2
2 (1 + µ1 − µ2)

4 Y1 Y
2
2 Y3 Z1 Z2 + 1

2
δ̂ Y 2

2 Z1 Z
2
2 (1− µ1 + µ2)

4 Y 2
1 Y2 Y3 Z

2
1 + 1

4
δ̂2 Z2

1 Z2 Z3

(

−1 + (µ1 − µ2) 2
)

2 Z1

(

−Y 2
2 Z2

2 + Y 2
3 Z2

3

)

2 Y2 Z1 Z2 (Y2 Z2 + Y3 Z3)

2 Y1 Y3 Z
2
1 Z3 − 1

2
δ̂ Z2

1 Z2 Z3 (1 + µ1 − µ2)

2 Y1 Y2 Z
2
1 Z2 + 1

2
δ̂ Z2

1 Z2 Z3 (−1 + µ1 − µ2)

C Highest-derivative partially-massless interactions

In this appendix we prove that the function (3.42) generates consistent highest-derivative

interactions involving partially-massless fields provided the condition (3.43) holds. Our

starting point is the Stückelberg version of (3.42) given in terms of the shifted variables

Ỹi of eq. (4.26). Consistency of the partially-massless interactions is tantamount to the

cancellation of the residues of the partially-massless poles. To this end, we need in prin-

ciple to integrate by parts all the total-derivative terms contained in the shifted variables.

However, one can simplify the computations considering the following ansatz:

K(Ỹ1, Ỹ2, Ỹ3) = K(Ỹ1 − δ̂ ∂w1 ∂η1 , Ỹ2 − δ̂ ∂w2 ∂η2 , Ỹ3 − δ̂ ∂w3 ∂η3) f(η1, η2, η3) , (C.1)

where the results of the integrations by parts are encoded in the function f . At this point,

what is left is to impose the gauge invariance of the ansatz. Taking the αi’s in the Ỹi’s to

satisfy (3.25), one ends up with the following differential equation for the function f :

{

[

1− 2(2α1 + 1)η1 + 4α1(α1 + 1)η21
]

∂η1 + µ1

[

2α1 + 1− 4α1(α1 + 1)η1
]

−2
[

η2 − 2(α2 + 1)η22
]

∂η2 + µ2

[

1− 4(α2 + 1)η2
]

+2
[

η3 − 2α3η
2
3

]

∂η3 − µ3

[

1− 4α3η3
]

}

f(η1, η2, η3) = 0 , (C.2)
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and cyclic permutations thereof. The solution of the latter differential equations is

f(η1, η2, η3) =
[

1− 2 (α1 + 1) η1 − 2α2 η2
]
1
2
(µ1+µ2−µ3)

×
[

1− 2 (α2 + 1) η2 − 2α3 η3
]
1
2
(µ2+µ3−µ1)

×
[

1− 2 (α3 + 1) η3 − 2α1 η1
]
1
2
(µ3+µ1−µ2) , (C.3)

whose Taylor coefficients at the order η ri+1
i correspond to the residues of the poles µi = ri

associated with W ri+1
i . Concentrating on the gauge consistency with respect to the i-th

field, one can set ηi±1 = 0 so that the function f becomes the generating function of the

Jacobi polynomials. One can then extract the residues as

(

∂ ri+1
ηi

f
)

(0, 0, 0) = (−2)ri+1

(1
2(ri + µi+1 − µi−1)

ri + 1

)

, (C.4)

where the homogeneity of the i-th field is a positive integer ri. The highest-derivative

interactions (3.42) become consistent whenever (C.4) vanishes. The latter requirement is

equivalent to (3.43).

D Massless limit in flat space

This appendix includes further details about the massless limit in flat space consid-

ered in section 4.3. It is important to notice that, in the generic analysis which led to

eqs. (4.35, 4.36), g appears only through Ĝ. However, in general, it can also appear when-

ever the leading terms cancel identically. More precisely, if the first n leading terms cancel

then the (n+ 1)-th term becomes dominant and contains n-th powers of g. Therefore, for

the sake of completeness, we consider all the cases in which the generic dominant terms

cancel among each other. These situations can be systematically analyzed by focusing on

the particular combinations of variables giving rise to the desired cancellations.

[i.] In the 2 massless and 1 massive case, the following combination

µ−2
(

Ĥ1 Ĥ2 − Ŷ 2
3 Ĥ3

)

= −1

2
ν23
(

g y3 + y1 y2 ∂
2
v3

)

+O(µ) , (D.1)

gives rise to the cancellation of the terms proportional to µ−2 y4.

[ii.] In the 1 massless and 2 equal massive case, there is no combination leading to the

cancellation and g can show up only through Ĝ (4.36).

[iii.] In the 1 massless and 2 different massive case, the following combination

µ−2

[

Ŷ2 Ŷ3 Ĥ2 − Ŷ 2
3 Ĥ3 +

1

2

(

M2
2 −M2

3

)

Ẑ1 Ĥ2

]

=
1

2

(

ν22 − ν23
)

[

g y3 +
ν2
ν3

y1 y3 ∂v3 ∂v2 −
1

2

ν22 − ν23
ν23

y1 y2 ∂
2
v3

]

+O(µ) , (D.2)
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or, equivalently

µ−2

[

Ŷ2 Ŷ3 Ĥ3 − Ŷ 2
2 Ĥ2 +

1

2

(

M2
3 −M2

2

)

Ẑ1 Ĥ3

]

=
1

2

(

ν23 − ν22
)

[

g y2 +
ν3
ν2

y1 y2 ∂v3 ∂v2 −
1

2

ν23 − ν22
ν22

y1 y3 ∂
2
v2

]

+O(µ) , (D.3)

allow the cancellation of the dominant term proportional to µ−2 y4.

[iv.] In the 3 massive case, the following combination

Ŷ1 Ẑ1 + Ŷ2 Ẑ2 + Ŷ3 Ẑ3

= g+
ν22+ν23−ν21

2 ν2 ν3
y1 ∂v2 ∂v3+

ν23+ν21−ν22
2 ν3 ν1

y2 ∂v3 ∂v1+
ν21+ν22−ν23

2 ν1 ν2
y3 ∂v1 ∂v2+O(µ) ,

(D.4)

does not contain the dominant term proportional to µ−1 y2 ∂v.

Notice that all resulting massless vertices that involve g are decorated with the contribu-

tions of the Stückelberg fields.

E Cubic interactions of open strings in the first Regge trajectory

In this appendix we show that the string interactions encoded by (5.1) nicely fit in with

the classification we have provided in section 3.1. For simplicity, let us drop Chan-Paton

factors as well as the constant i
√
GN g0/α

′, and focus on the first term in (5.1). The latter

can be expanded as

K =
∑

σi,τi

1

σ1!σ2!σ3! τ1! τ2! τ3!

(

−2α′)
σ1+σ2+σ3

2 y σ1
1 y σ2

2 y σ3
3 z τ1

1 z τ2
2 z τ3

3 , (E.1)

where the spins of the fields are

s1 = σ1 + τ2 + τ3 , s2 = σ2 + τ1 + τ3 , s3 = σ3 + τ1 + τ2 . (E.2)

Concentrating on particular choices of (s1, s2, s3), we can extract consistent couplings for

each of the five different categories. In particular, defining the d-dimensional counterpart

hi of Hi as

hi = yi−1 yi+1 +
1

2
[M2

i − (Mi−1 +Mi+1)
2] zi , (E.3)

one ends up with the following five cases:

[i.] In the 3 massless case with (s1, s2, s3) = (1, 1, 1), one gets

K =
(

−2α′) 3
2

(

y1 y2 y3 −
1

2α′ g

)

. (E.4)
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[ii.] In the 2 massless and 1 massive case with (s1, s2, s3) = (1, 1, s), one has

K = − 1

(s− 1) s!

(

−2α′) s+2
2 ys−2

3

(

y 2
3 h3 − s h1 h2

)

. (E.5)

[iii.] In the 1 massless and 2 equal massive case with (s1, s2, s3) = (1, s, s), one finds

K =
s
∑

k=0

1

k! [(s−k)!]2
(

−2α′) 2s+1
2

−k
y s−k−1
2 y s−k−1

3 z k
1

(

y1 y2 y3−
(s−k)

2α′ (g − y1 z1)

)

.

(E.6)

[iv.] In the 1 massless and 2 different massive case with (s1, s2, s3) = (1, s, s′) with s < s′,

one gets

K =
s
∑

k=0

1

k!(s′−k)!(s−k)!

(

−2α′) s′+s+1
2

−k
ys−k−1
2 ys

′−k−1
3 zk1

(

s′−k

s′−s
y2h2 +

s−k

s−s′
y3h3

)

.

(E.7)

[v.] Finally, the 3 massive case trivially fits in with the classification.
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