27,702 research outputs found

    Fluctuations and scaling of inverse participation ratios in random binary resonant composites

    Full text link
    We study the statistics of local field distribution solved by the Green's-function formalism (GFF) [Y. Gu et al., Phys. Rev. B {\bf 59} 12847 (1999)] in the disordered binary resonant composites. For a percolating network, the inverse participation ratios (IPR) with q=2q=2 are illustrated, as well as the typical local field distributions of localized and extended states. Numerical calculations indicate that for a definite fraction pp the distribution function of IPR PqP_q has a scale invariant form. It is also shown the scaling behavior of the ensemble averaged described by the fractal dimension DqD_q. To relate the eigenvectors correlations to resonance level statistics, the axial symmetry between D2D_2 and the spectral compressibility χ\chi is obtained.Comment: 7 pages, 6 figures, accepted by Physical Review

    Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science

    Get PDF

    Phase diagram and symmetry breaking of SU(4) spin-orbital chain in a generalized external field

    Full text link
    The ground state phases of a one-dimensional SU(4) spin-orbital Hamiltonian in a generalized external field are studied on the basis of Bethe-ansatz solution. Introducing three Land\'e gg factors for spin, orbital and their products in the SU(4) Zeeman term, we discuss systematically the various symmetry breaking. The magnetization versus external field are obtained by solving Bethe-ansatz equations numerically. The phase diagrams corresponding to distinct residual symmetries are given by means of both numerical and analytical methods.Comment: Revtex4, 16 pages, 7 figure

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    Magnetic properties of an SU(4) spin-orbital chain

    Full text link
    In this paper, we study the magnetic properties of the one-dimensional SU(4) spin-orbital model by solving its Bethe ansatz solution numerically. It is found that the magnetic properties of the system for the case of gt=1.0g_t=1.0 differs from that for the case of gt=0.0g_t=0.0. The magnetization curve and susceptibility are obtained for a system of 200 sites. For 0<gt<gs0<g_t<g_s, the phase diagram depending on the magnetic field and the ratio of Land\'e factors, gt/gsg_t/g_s, is obtained. Four phases with distinct magnetic properties are found.Comment: 4 pages, 2 figure

    Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using &#946-glucuronidase (GUS) as a reporter

    Get PDF
    Agrobacterium-mediated transformation factors for sweet potato embryogenic calli were optimized using -glucuronidase (GUS) as a reporter. The binary vector pTCK303 harboring the modified GUS genedriven by the CaMV 35S promoter was used. Transformation parameters were optimized including bacterial concentration, pre-culture period, co-cultivation period, immersion time, acetosyringone (AS)concentration and mannitol treated time. Results were obtained based on the percentage of GUS expression. Agrobacterium tumefaciens strain EHA105 at concentration OD600 nm = 0.8 showed the highest virulence on sweet potato embryogenic callus. Four days of pre-culture, four days ofco-cultivation, 10 min of immersion, 200 M acetosyringone and 60 min of mannitol-treated embryogenic callus gave the highest percentage of GUS positive transformants

    Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Get PDF
    The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA) generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP) larger than 20 g m&lt;sup&gt;&amp;minus;2&lt;/sup&gt;. The magnitude of the reduction increases with IWP. &lt;br&gt;&lt;br&gt; AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of the aerosol indirect effect using a GCM in connection with A-Train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily employed for application to other GCMs
    • …
    corecore