64 research outputs found

    Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors

    Get PDF
    The γ-proteobacterial plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the type III secretion system to inject ca. 28 Avr/Hop effector proteins into plants, which enables the bacterium to grow from low inoculum levels to produce bacterial speck symptoms in tomato, Arabidopsis thaliana, and (when lacking hopQ1-1) Nicotiana benthamiana. The effectors are collectively essential but individually dispensable for the ability of the bacteria to defeat defenses, grow, and produce symptoms in plants. Eighteen of the effector genes are clustered in six genomic islands/islets. Combinatorial deletions involving these clusters and two of the remaining effector genes revealed a redundancy-based structure in the effector repertoire, such that some deletions diminished growth in N. benthamiana only in combination with other deletions. Much of the ability of DC3000 to grow in N. benthamiana was found to be due to five effectors in two redundant-effector groups (REGs), which appear to separately target two high-level processes in plant defense: perception of external pathogen signals (AvrPto and AvrPtoB) and deployment of antimicrobial factors (AvrE, HopM1, HopR1). Further support for the membership of HopR1 in the same REG as AvrE was gained through bioinformatic analysis, revealing the existence of an AvrE/DspA/E/HopR effector superfamily, which has representatives in virtually all groups of proteobacterial plant pathogens that deploy type III effectors

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Morphological and optical properties of porous hydroxyapatite/cornstarch (HAp/Cs) composites

    Get PDF
    This paper presents the correlation between the morphological characteristics and the diffuse reflectance (optical properties) of the porous hydroxyapatite/cornstarch (HAp/Cs) composites with various starch proportions (30, 40, 50, 60, 70, 80 and 90 wt%). The porous composites were measured via SEM and enhanced by image processing to find the average pore size, strut width, and average surface roughness. The average porosity of the porous composites was measured using liquid displacement method. The diffuse reflectance spectroscopy was implemented to investigate the diffuse reflectance and the corresponding optical band gap energy of the porous composites in the 500–900 nm range. A relationship between morphological characteristics and diffuse reflectance properties were established using Pearson's correlation coefficient. The findings of the study depict that a strong correlation can be noticed between optical band gap energy with porosity, pore sizes and surface roughness of the porous composites. Meanwhile, the strong correlations between the diffuse reflectance spectral gradient with surface roughness can be observed. The moderate correlations can be observed between the diffuse reflectance spectral gradient with pore sizes and strut width of the porous composites

    Disabling surveillance: Bacterial type III secretion system effectors that suppress innate immunity

    Get PDF
    Many Gram-negative bacterial pathogens of plants and animals are dependent on a type III protein secretion system (TTSS). TTSSs translocate effector proteins into host cells and are capable of modifying signal transduction pathways. The innate immune system of eukaryotes detects the presence of pathogens using specific pathogen recognition receptors (PRRs). Plant PRRs include the FLS2 receptor kinase and resistance proteins. Animal PRRs include Toll-like receptors and nucleotide-binding oligomerization domain proteins. PRRs initiate signal transduction pathways that include mitogen-activated protein kinase (MAPK) cascades that activate defence-related transcription factors. This results in induction of proinflammatory cytokines in animals, and hallmarks of defence in plants including the hypersensitive response, callose deposition and the production of pathogenesis-related proteins. Several type III effectors from animal and plant pathogens have evolved to counteract innate immunity. For example, the Yersinia YopJ/P cysteine protease and the Pseudomonas syringae HopPtoD2 protein tyrosine phosphatase inhibits defence-related MAPK kinase activity in animals and plants respectively. Thus, type III effectors can suppress signal transduction pathways activated by PRR surveillance systems. Understanding targets and activities of type III effectors will reveal much about bacterial pathogenicity and the innate immune system in plants and animals. © 2004 Blackwell Publishing Ltd

    A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

    No full text
    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ΔCEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in ΔCEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The ΔCEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants
    corecore