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Summary

Many Gram-negative bacterial pathogens of plants
and animals are dependent on a type III protein
secretion system (TTSS). TTSSs translocate effector
proteins into host cells and are capable of modifying
signal transduction pathways. The innate immune
system of eukaryotes detects the presence of patho-
gens using specific pathogen recognition receptors
(PRRs). Plant PRRs include the FLS2 receptor kinase
and resistance proteins. Animal PRRs include Toll-
like receptors and nucleotide-binding oligomeriza-
tion domain proteins. PRRs initiate signal transduc-
tion pathways that include mitogen-activated protein
kinase (MAPK) cascades that activate defence-
related transcription factors. This results in induction
of proinflammatory cytokines in animals, and hall-
marks of defence in plants including the hypersensi-
tive response, callose deposition and the production
of pathogenesis-related proteins. Several type III
effectors from animal and plant pathogens have
evolved to counteract innate immunity. For example,
the 

 

Yersinia

 

 YopJ/P cysteine protease and the

 

Pseudomonas syringae

 

 HopPtoD2 protein tyrosine
phosphatase inhibits defence-related MAPK kinase
activity in animals and plants respectively. Thus, type
III effectors can suppress signal transduction path-
ways activated by PRR surveillance systems. Under-
standing targets and activities of type III effectors
will reveal much about bacterial pathogenicity and
the innate immune system in plants and animals.

Introduction

 

A number of Gram-negative bacterial plant and animal
pathogens depend on type III secretion systems (TTSSs)
to inject virulence effector proteins into host cells (Hueck,
1998; Galán and Collmer, 1999). These pathogens
include the animal pathogens 

 

Yersinia

 

 spp., 

 

Salmonella
typhimurium

 

, 

 

Shigella flexneri

 

, 

 

Escherichia coli

 

 and

 

Pseudomonas aeruginosa

 

 and the plant pathogens

 

Pseudomonas syringae

 

, 

 

Erwinia amylovora

 

, 

 

Xanthomo-
nas campestris

 

 and 

 

Ralstonia solanacearum

 

. The dis-
eases they cause run the whole gamut from Black Death
in humans (i.e. the bubonic plague) caused by 

 

Yersinia
pestis

 

 to fire blight of pear and apple caused by 

 

E. amy-
lovora

 

 (Alfano and Collmer, 1996; Cornelis, 2000). More-
over, TTSSs have also been recently identified in insect
pathogens and eukaryotic-associated bacteria (Dale

 

et al

 

., 2001; Marie 

 

et al

 

., 2001). Certain animal pathogens
have two distinct TTSSs (three if the flagellar TTSS is
included), whereas plant pathogens, excluding the flagel-
lar TTSS, appear to have one (Shea 

 

et al

 

., 1996; Haller

 

et al

 

., 2000).
The TTSSs and the proteins they secrete have been

given a variety of names depending on the species of
origin. For example, the well-characterized TTSS from

 

Yersinia

 

 spp. is called the Ysc system (Yop secretion)
and the effector proteins it secretes are Yops (

 

Yersinia

 

outer protein). In plant pathogens the TTSS is called the
Hrp (hypersensitive response and pathogenicity) system
because the original mutants lost the ability to elicit the
hypersensitive response (HR) (Lam 

 

et al

 

., 2001), a pro-
grammed cell death (PCD) associated with plant
defence, as well as their pathogenic ability. We now
know these original mutants that displayed Hrp pheno-
types were defective in components of the Hrp TTSS
apparatus (Alfano and Collmer, 1997). The proteins
secreted by Hrp TTSSs have been given a variety of
names including Hop (for Hrp outer protein), Xop
(

 

Xanthomonas

 

 outer protein), Pop (

 

Pseudomonas

 

 outer
protein, which actually are 

 

R. solanacearum

 

 proteins
based on its earlier genus name) and Avr (for aviru-
lence) because several of these were originally identified
based on their property of limiting the host range of the
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pathogen (Alfano and Collmer, 1997; Bonas and Lahaye,
2002).

The activities of many of the TTSS effectors have been
well characterized in animal pathogens where the majority
of them co-opt the host cytoskeleton by either inhibiting
or promoting actin polymerization to block or induce
phagocytosis by host cells (Cornelis, 2002a; Cossart and
Sansonetti, 2004). The TTSS effectors accomplish this by
modulating the signal transduction pathways controlling
actin polymerization in host cells. There are excellent
reviews describing the activities of animal type III effectors
(Cornelis, 2002b; Holden, 2002; Zaharik 

 

et al

 

., 2002).
Plant pathogen effectors are less understood. However,
this outlook has improved with the recent identification of
many effectors from plant pathogens (mostly from 

 

P. syrin-
gae

 

), providing additional insights into their potential activ-
ities (Collmer 

 

et al

 

., 2002; Guttman 

 

et al

 

., 2002; Petnicki-
Ocwieja 

 

et al

 

., 2002; Greenberg and Vinatzer, 2003;
Chang 

 

et al

 

., 2004). The large increase in the effector
inventory has been spurred by genomic investigations and
similar studies on other TTSS-containing plant pathogens
suggest that the effector list for these microbes will be
considerable as well (Salanoubat 

 

et al

 

., 2002; da Silva

 

et al

 

., 2002; Buttner 

 

et al

 

., 2003). What are these effectors
doing inside the plant cell to favour pathogenesis? As we
describe below several 

 

P. syringae

 

 effectors have been
shown to suppress plant defence responses. Interestingly,
several effectors from animal pathogens also suppress
the innate immune system in mammals. Thus, an emerg-
ing role of type III effectors appears to be suppression of
eukaryotic innate immunity.

One of the primary goals of this review is to highlight
the plant pathogen effectors that suppress plant defences
and compare them with animal pathogen effectors that act
in similar ways. Plant defences have been categorized
differently based on how the resistance is manifested and
a brief introduction to some of these terms is warranted.
Induced defences that successfully stop non-pathogenic
bacteria (along with premade defences, which are not
discussed here) from growing in the intercellular spaces
of plants have been referred to as basal defences, local-
ized induced resistance or innate immunity (Nurnberger

 

et al

 

., 2004). In addition, plants can protect themselves
against pathogens that cause diseases in other plant spe-
cies, referred to as non-host resistance (Heath, 2000;
Thordal-Christensen, 2003). Finally, specific cultivars or
lines of a given plant species can be resistant to specific
races or strains of a pathogenic microorganism. These
defences are referred to as cultivar-specific or gene-for-
gene resistance because they result from the presence of
Avr signals in the pathogen, which are recognized by
resistance (R) proteins in the host plant (Flor, 1971; Keen,
1990). As described below, most of the bacterial Avr sig-
nals are type III effectors, which are recognized inside the

plant cell by R protein-mediated defence pathways. Here,
we will use the terms basal resistance, non-host resis-
tance and cultivar-specific resistance to refer to the differ-
ent types of plant resistances. Collectively, we will refer to
them as the plant innate immune system because they
seem to be different layers of the same defence system
and have similarities to innate immunity in animals.

The innate immune systems of plants, mammals and
insects are dependent on a hardwired sensor-based sur-
veillance system that recognizes indicators of infection by
microorganisms (Imler and Hoffmann, 2001; Nurnberger

 

et al

 

., 2004). Thus, to succeed as pathogens bacteria
must first disable these defences before they gain access
to their biochemical loot – the nutrients available in the
host. This review will focus primarily on the recent findings
that indicate plant pathogens use TTSS effectors to cir-
cumvent plant innate immunity. Because TTSS effectors
from animal pathogens are also capable of suppressing
innate immunity, we will compare these effectors with their
plant pathogen counterparts. First, we introduce some of
the salient features of the innate immune systems in both
plants and animals that constitute the ‘alarm’ sensors that
trigger host defence responses against bacteria.

 

Tripping the switch: pathogen-associated molecular 
patterns (PAMPs), general elicitors and Avr proteins 
activate innate immunity

 

Plants induce basal defence responses upon sensing
conserved molecules produced by microorganisms
(Boller, 1995). These include chitin (Felix 

 

et al

 

., 1993) and
ergosterol (Granado 

 

et al

 

., 1995) from fungi and
lipopolysaccharide (LPS) (Dow 

 

et al

 

., 2000), cold shock
protein (Felix and Boller, 2003), and flagellin from bacteria
(Gomez-Gomez and Boller, 2002). These molecules have
been referred to as general elicitors, but they are concep-
tually equivalent to pathogen-associated molecular
patterns (PAMPs), molecules present in microbes that
are recognized by the innate immune system in animals
(Boller, 1995; Medzhitov and Janeway, 1997). PAMPs are
recognized in animals by specific host pattern recognition
receptors (PRRs), which include the Toll-like receptors
(TLRs) and nucleotide binding oligomerization domain
(NOD) proteins (Medzhitov, 2001; Inohara and Nunez,
2003). TLRs generally sense extracellular PAMPs,
whereas NODs recognize PAMPS intracellularly (Girardin

 

et al

 

., 2002).
A similar dichotomy is seen with plant recognition pro-

teins. A plant receptor-like kinase (RLK), FLS2, recog-
nizes bacterial flagellin from the outside of plant cells,
whereas R proteins recognize bacterial Avr proteins intra-
cellularly. The similarities between these proteins and ani-
mal TLRs and NODs have been described (Dangl and
Jones, 2001; Medzhitov, 2001; Nurnberger and Brunner,
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2002; Inohara and Nunez, 2003; Jones and Takemoto,
2004; Nurnberger 

 

et al

 

., 2004) and here, we group plant
proteins that sense either PAMPs or Avr proteins together
with animal proteins that sense PAMPs as PRRs (Fig. 1).
FLS2 is a plant PRR that recognizes flagellin PAMP
(Gomez-Gomez and Boller, 2000). Bacterial molecules
other than flagellin induce similar basal defences, sug-
gesting that other plant PRRs might recognize additional
bacterial PAMPs. Moreover, bacterial extracts without elic-
itor-active flagellin induce basal resistance in 

 

Arabidopsis

 

implying that plants can recognize other bacterial PAMPs
(Zipfel 

 

et al

 

., 2004). 

 

Arabidopsis

 

 possesses 173 RLKs that
contain predicted extracellular domains and 10 candidate
RLKs are grouped phylogenetically with FLS2 (Shiu and
Bleecker, 2003). Thus, at least a subset of these may
encode PRRs. However, RLKs also play a prominent role
in plant development and hormone perception (Torii,
2000).

FLS2 has a predicted extracellular leucine-rich repeat
(LRR) domain which is probably involved in protein–

protein interactions (Kobe and Kajava, 2001) (see Fig. 1).
LRR domains are present in plant R proteins as well as
in Toll, TLRs and NOD proteins from insects and mam-
mals. Another key domain of FLS2 is a Ser/Thr kinase
domain, which transduces the PAMP signal to the cyto-
plasm (Gomez-Gomez 

 

et al

 

., 2001). Similar to FLS2, the
rice R protein Xa21 possesses an extracellular LRR
domain and a cytoplasmic Ser/Thr kinase domain (Fig. 1)
(Song 

 

et al

 

., 1995). Xa21 confers resistance from the bac-
terial plant pathogen 

 

Xanthomonas oryzae

 

 pv. 

 

oryzae

 

race 6. This is interesting because known bacterial Avr
proteins are recognized inside plant cells by cytoplasmic
R proteins. While the Avr determinant, AvrXa21, which is
recognized by Xa21 has yet to be identified, 

 

X. o. oryzae

 

mutants lacking AvrXa21 activity are defective in sulphur
assimilation hinting that Xa21 recognizes a sulphated
molecule (Shen 

 

et al

 

., 2002). Moreover, 

 

X. o. oryzae

 

genes required for AvrXa21 avirulence are similar to

 

Sinorhizobium meliloti

 

 nodulation genes needed for sul-
phate decoration of carbohydrate Nod factors. Legume
RLKs involved in recognition of rhizobia Nod factors have
been identified (Limpens 

 

et al

 

., 2003; Madsen 

 

et al

 

., 2003;
Radutoiu 

 

et al

 

., 2003) and they possess a cytoplasmic
kinase domain similar to FLS2 and Xa21 (Fig. 1). How-
ever, instead of LRR domains they have LysM domains,
which are thought to interact with carbohydrates (Spaink,
2004). The similarities between FLS2 and Xa21 suggest
AvrXa21 may be more similar to a PAMP than an Avr
protein, which blurs the distinction between what consti-
tutes a PAMP and an Avr.

Plant R proteins that perceive bacterial Avr proteins
can be categorized into four different classes (Fig. 1).
The largest, referred to as CC-NBS-LRR R proteins,
have a N-terminal coiled-coil (CC) domain, a central
nucleotide binding site (NBS) domain (equivalent to NOD
domains in animal PRRs) and a C-terminal LRR domain
(Dangl and Jones, 2001; Jones and Takemoto, 2004). A
second class, TIR-NBS-LRR, possesses a different N-
terminal domain, TIR (for Toll and IL-1 receptor) instead
of a CC domain. Only one member of this class is known
to recognize a bacterial Avr, AvrRps4 (Gassmann 

 

et al

 

.,
1999), and several other members recognize fungal and
viral Avr proteins (Nimchuk 

 

et al

 

., 2003). A third type of
NBS-LRR R protein, RRS1, is a TIR-NBS-LRR R protein
that has a C-terminal tryptophan-arginine-lysine-tyrosine
(WRKY) domain. WRKY domains are predicted to act as
transcription factors (Eulgem 

 

et al

 

., 2000; Deslandes

 

et al

 

., 2002). Another R protein is the tomato Pto protein,
which is a Ser/Thr protein kinase required for the recog-
nition of the 

 

P. syringae

 

 Avr proteins AvrPto and AvrPtoB
(Pedley and Martin, 2003). Pto is not an NBS-LRR type
R protein. However, Pto is dependent on Prf, a CC-NBS-
LRR type R protein, for recognition of Avr proteins. Thus,
Pto is not a ‘classic’ PRR like FLS2 and NBS-LRR R

 

Fig. 1.

 

Representative mammalian and plant pattern recognition 
receptors that recognize bacterial molecules. In mammals, TLR2 
recognizes several different microbial PAMPs including diacyl and 
triacyl lipopeptides with the assistance of TLR1 and TLR6, respec-
tively, which are not shown (Takeda and Akira, 2003). TLR4 recog-
nizes the lipopolysaccaride component of the outer membrane of 
Gram-negative bacteria in conjunction with CD14 (not shown). TLR5 
recognizes bacterial flagellin and TLR9 recognizes bacterial CpG 
DNA. NOD1 and NOD2 both recognize components of peptidoglycan. 
NOD1 recognizes 

 

N

 

-acetylglucosamine-

 

N

 

-acetylmuramic acid 
(G-M) with a tripeptide containing mesodiaminopimelate as the ter-
minal amino acid, which is found mainly in Gram-negative bacteria 
(Chamaillard et al., 2003). NOD2 recognizes G-M dipeptide, which is 
found in all bacteria containing peptidoglycan. In plants, FLS2 recog-
nizes flagellin, receptor kinases such as NFR1 recognize carbohy-
drate NOD factors from rhizobia, and the Xa21 receptor kinase 
recognizes AvrXa21, an undefined Avr signal. Representative R pro-
teins that recognize different Avr proteins are shown (see text for 
details). LPS, lipopolysaccharide; LRR, leucine-rich repeats; TIR, toll 
and IL-receptor; PK, serine/threonine protein kinase; LysM, lysin 
motif; NOD/NBS, nucleotide-binding oligomerization domain/
nucleotide-binding site; CARD, amino terminal caspase recruitment 
effector domain; CC, coiled-coil; WRKY, tryptophan-arginine-lysine-
tyrosine domain. This figure was modified from Jones and Takemoto 
(2004) and Takeda and Akira (2003).
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proteins. Thus far, all the R proteins that recognize iden-
tified bacterial Avr proteins are located inside the plant
cell with several of them localized to the plant plasma
membrane (Boyes 

 

et al

 

., 1998; Nimchuk 

 

et al

 

., 2001).
RRS1 is unusual because it becomes nuclear-localized
only in the presence of its cognate Avr protein, PopP2,
which contains nuclear localization signals (Deslandes

 

et al

 

., 2003). The long standing model for how R proteins
recognize their cognate Avr proteins is by directly inter-
acting with them (Gabriel and Rolfe, 1990). However,
recent evidence, at least for specific bacterial Avr pro-
teins, supports another model called the guard hypothe-
sis, in which R proteins sense an Avr protein indirectly by
detecting its enzymatic activity (Schneider, 2002; Innes,
2004). Because the activities of the majority of plant
pathogen effectors are unknown, it remains possible that
some are not enzymes. Thus, some bacterial Avr
proteins may still be recognized directly by their cognate
R proteins.

 

Letting out the dogs: outputs of innate immunity

 

Signal transduction pathways are triggered once animal
or plant PRRs perceive PAMPs or Avr proteins and
defence-related outputs are deployed. The signal trans-
duction components acting downstream of Avr protein
recognition have been recently reviewed (Martin 

 

et al

 

.,
2003; Nimchuk 

 

et al

 

., 2003). Many of these are dependent
on salicylic acid (SA) and are also important in systemic
acquired resistance (SAR) (Durrant and Dong, 2004), a
form of resistance that is triggered in plants away from the
local site of infection. The emerging picture is that a com-
plex signal network is triggered upon perception of an Avr
protein. One distinction that can be made is that CC-NBS-
LRR R proteins are dependent on NDR1 (Century 

 

et al

 

.,
1997), whereas TIR-NBS-LRR R proteins are dependent
on EDS1 (Aarts 

 

et al

 

., 1998; Falk 

 

et al

 

., 1999).
Another plant protein known to play a prominent role in

R protein-mediated defence pathways is NPR1/NIM1,
which was first identified for its role in SAR (Cao 

 

et al

 

.,
1994; Delaney 

 

et al

 

., 1995). NPR1 interacts with several
members of the TGA family of basic leucine zipper tran-
scription factors, is nuclear-localized when activated and
is a positive regulator of defence genes (Durrant and
Dong, 2004). NPR1 shares some similarity with I

 

k

 

B, a
negative regulator of the NF-

 

k

 

B transcription factor utilized
in signal transduction pathways in animals (Ryals 

 

et al

 

.,
1997). The key role that NPR1 plays in local resistance is
highlighted by the fact that overexpression of NPR1 in

 

Arabidopsis

 

 enhances resistance to 

 

P. syringae

 

, the
oomycete 

 

Peronospora parasitica

 

, and fungus 

 

Erysiphe
cichoracearum

 

 (Friedrich 

 

et al

 

. 2001; Cao 

 

et al

 

., 1998)
and in rice conferred enhanced resistance to 

 

X. o. oryzae

 

(Chern 

 

et al

 

., 2001). As NPR1 activation requires SA, this

emphasizes the importance of SA-dependent defences at
infection sites.

Components of signal transduction pathways operating
downstream of PAMP perception in both plants and ani-
mals are not well understood. However, there are common
features shared by both, which have been noted (Cohn

 

et al

 

., 2001; Nurnberger and Brunner, 2002; Holt 

 

et al

 

.,
2003; Nurnberger 

 

et al

 

., 2004). For example, mitogen-
activated protein kinase (MAPK) cascades are activated
in plants and animals after PAMP perception (Nurnberger

 

et al

 

., 2004). In both hosts, transcription factors are acti-
vated after activation of MAPK – the NF-

 

k

 

B transcription
factor in animals and WRKY transcription factors in plants
are good examples (Lee 

 

et al

 

., 1997; Asai 

 

et al

 

., 2002;
Kim and Zhang, 2004; Zipfel 

 

et al

 

., 2004). In plants, MAPK
pathways appear to be points of convergence between
multiple elicitors of plant defence including PAMPs and
Avr proteins. For example in tobacco, the MAPKs SIPK
(salicylate-inducible protein kinase) and WIPK (wound-
inducible protein kinase) are activated by fungal, viral and
bacterial elicitors (Zhang and Klessig, 2001). Silencing of
a tobacco MAPK kinase kinase (MAPKKK), NPK1, stops
the plant from responding to several Avr proteins, includ-
ing the 

 

X. c. vesicatoria

 

 Avr protein AvrBs2, consistent
with a requirement of MAPK cascades in these R protein-
mediated responses (Jin 

 

et al., 2002). A MAPKKK that
acts upstream of SIPK in Nicotiana benthamiana and
tomato, MAPKKKa, has recently been identified. This
MAPKKK is triggered by different elicitors including AvrPto
(del Pozo et al., 2004). A complete MAPK cascade [MKK1
(MAPKKK), MKK4/5 (MAPK kinases) and MPK3/6
(MAPKs)] has been identified in Arabidopsis. Among
these, MPK6, a SIPK MAPK orthologue, is activated by
the flagellin PAMP (Asai et al., 2002; Nuhse et al., 2000).
Interestingly, this MAPK cascade results in the activation
of several WRKY transcription factors and at least one of
these factors protects Arabidopsis from fungal and bacte-
rial infections (Asai et al., 2002; Navarro et al., 2004;
Zipfel et al., 2004).

There is much overlap between the outputs of both
PAMP-triggered and Avr-triggered signal transduction
pathways in plants. Some of these physiological
responses include generation of reactive oxygen species
(ROS) and nitric oxide (NO), changes in cytoplasmic Ca2+

levels, production of pathogen-related gene expression,
phytoalexin production and callose deposition in the cell
wall (Heath, 2000; Dangl and Jones, 2001; Gomez-
Gomez and Boller, 2002; Jones and Takemoto, 2004).
Among the more dramatic defence responses triggered is
the aforementioned HR, more frequently associated with
non-host and cultivar-specific resistance than with basal
resistance. Even though we know many of the outputs of
a successful defence response, it remains unclear which
outputs are effective against bacteria. The failure of
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PAMPs to trigger an HR may be more of a threshold effect
than differences in signal transduction as most of the other
responses are shared between cultivar-specific and basal
resistances. Supporting this, the non-specific oxidative
burst triggered by both saprophytes and pathogens is less
substantial than the one that is specifically induced by the
presence of Avr proteins (Baker and Orlandi, 1995).

Clearly, a better understanding of the differences in R
protein pathways and PAMP-triggered pathways is
needed. Currently, one way to separate plant defence
outputs is to test whether the output in question is depen-
dent on SA. This can be easily done by determining
whether the response is produced in Arabidopsis mutant
plants impaired in SA biosynthesis (Wildermuth et al.,
2001). Alternatively, nahG plants could be utilized to test
whether a plant response is dependent on SA. These
plants carry the P. putida nahG gene that encodes salicy-
late hydroxylase (Gaffney et al., 1993), an enzyme that
degrades SA, which is generally required for R protein-
dependent defences (Dangl and Jones, 2001; Bonas and
Lahaye, 2002). Nevertheless, experiments using nahG
plants should be interpreted with caution because a
recent report suggests that the loss of non-host resistance
to P. syringae by nahG-containing Arabidopsis plants
results from SA degradation products and not from the
inhibition of SA-dependent defences (van Wees and Gla-
zebrook, 2003).

In animals, PAMPs are recognized by TLRs and NOD
PRRs, which activate signalling pathways that induce
innate proinflammatory responses (Barton and Medzhitov,
2003; Inohara and Nunez, 2003). Several of these
responses, once over a threshold, will activate the adap-
tive immune system in animals. Identifying signal trans-
duction components downstream of animal PRRs is an
active area of research (Barton and Medzhitov, 2004). All
known TLRs utilize MyD88 TIR-domain adaptor proteins.
Recently, certain TLRs have been shown to utilize other
TIR-domain-containing adaptor proteins called Trif (or
TICAM-1) (Yamamoto et al., 2003) and TIRAP (Horng
et al., 2002). MyD88 recruits members of the IL-1
receptor-associated kinases IRAK-1 and IRAK-4 (Takeda
et al., 2003). The plant R protein Pto shares some simi-
larities with IRAKs and Pelle, a kinase involved in innate
immunity in Drosophilia highlighting another similarity in
plant and animal innate immunity (Cohn et al., 2001).
After IRAK is activated by phosphorylation, it associates
with TRAF6, an E3 ligase, which in turn activates MAP
kinases. This kinase cascade results in the activation of
both the Ap-1 and NF-kB transcription factors, which acti-
vate a large number of proinflammatory genes (Pasare
and Medzhitov, 2003; Takeda et al., 2003).

Signalling pathways acting downstream of NOD PRRs
are less understood than TLRs probably because they
have only recently been associated with PAMP percep-

tion. However, activation of both NOD1 and NOD2 results
in NF-kB and caspase activation (Inohara and Nunez,
2003). In addition, both also associate with RICK (also
known as RIP2), a CARD-containing protein kinase, which
in turn associates with NEMO, a regulatory subunit of the
IKK complex (Carneiro et al., 2004). Ultimately, triggering
NOD1 and NOD2 results in the secretion of cytokines
(e.g. IL-8) from antigen-presenting cells and the expres-
sion of other costimulatory molecules that activate anti-
gen-specific effector T cells of the adaptive immune
system (Inohara and Nunez, 2003).

A myriad of responses occur after triggering either ani-
mal or plant PRRs. The identification of these responses
has been greatly facilitated by mRNA expression profiling
after exposure to a PAMP or pathogen. For example, Tao
et al. (2003) profiled the changes in mRNA expression in
Arabidopsis infected with a virulent P. syringae strain ver-
sus P. syringae strains containing Avr proteins recognized
by R protein PRRs present in the test plant. The presence
of specific Avr proteins in P. syringae (i.e. making P. syrin-
gae avirulent) produced a similar mRNA pattern as the
virulent pathogen except that the expression of defence
genes was earlier and increased. This supports the
hypothesis that bacterial plant pathogens have strategies
to successfully delay and/or suppress defence responses.
Recent gene profiling experiments found that many genes
are activated upon challenging Arabidopsis plants with
flagellin (Navarro et al., 2004; Zipfel et al., 2004). These
experiments revealed important observations and new
directions for experimentation. One particularly interesting
result is that the recognition of flagellin by FLS2 induces
the expression of many other RLKs suggesting that rec-
ognition of the flagellin PAMP potentiates the plant to
recognize other PAMPs. Studies such as these should
continue to reveal the global changes that occur upon
PAMP recognition.

Disabling surveillance: type III effectors that act as 
suppressors of innate immunity

Given the elaborate surveillance strategies plants and
animals use to defend against microorganisms, it is not
surprising that microorganisms have countered with their
own strategies to thwart their hosts. It has become
increasingly clear within the last couple of years that plant
pathogen type III effectors suppress plant defence
responses (Alfano and Collmer, 2004). Indeed, there were
clues in the early 1990s that the TTSSs of plant pathogens
were capable of suppressing plant defences. For example,
X. c. pv. campestris hrp mutants induced an HR-like
response in the vascular system of crucifers (called the
vascular HR), which the compatible wild-type strain did
not elicit, suggesting that wild-type strains suppressed
the vascular HR (Kamoun et al., 1992). In pioneering
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research, Jakobek et al. (1993) showed that a compatible
P. syringae pathovar, P. s. pv. phaseolicola, suppressed
induction of defence-related mRNA and phytoalexins in
bean that were separately induced by an incompatible P.
syringae pathovar and non-pathogenic E. coli. In retro-
spect, the induction of defence responses by E. coli prob-
ably resulted from PAMP-triggered defences. Another
study, used electron microscopy to show that X. c. pv.
vesicatoria suppressed papillae formation in plants and
this ability was dependent on hrp genes (Brown et al.,
1995).

These early studies suggested the TTSS of bacterial
plant pathogens was involved in defence suppression.
More recent studies suggested that specific type III effec-
tors may be altering defence pathways in plants. For
example, VirPphA, a type III effector from P. s. pv.
phaseolicola, blocked other ‘masked’ Avr proteins from
eliciting the HR (Jackson et al., 1999). P. s. pv. phaseoli-
cola virPphA mutants elicited HRs on certain bean culti-
vars that were normally infected by the wild-type strain.
Thus, the virPphA mutation effectively converted a virulent
pathogen to an avirulent one. Similar phenotypes were
observed for P. s. pv. phaseolicola mutants defective in
AvrPphC and AvrPphF (Tsiamis et al., 2000). Another
phenomenon that now makes more sense in the context
of effectors acting as suppressors is the observation that
AvrRpt2 blocked the ability of AvrRpm1 to elicit an RPM1-
dependent HR in Arabidopsis plants (Ritter and Dangl,
1996). AvrRpm1 elicits an HR in Arabidopsis more quickly
than AvrRpt2. However, when both Avr proteins are
present in P. syringae and infiltrated into Arabidopsis Col-
0, which contains R proteins that recognize both Avrs,
only the slower AvrRpt2-dependent HR develops. This
suggested that the AvrRpt2 somehow interfered with
AvrRpm1 recognition. This effect appears to result from
the AvrRpt2-dependent elimination of a plant protein
called RIN4, which is monitored by RPM1 such that when
RIN4 is eliminated the RPM1 surveillance system is dis-
abled (Mackey et al., 2002; 2003; Axtell and Staskawicz,
2003).

Recently, several P. syringae effectors have been iden-
tified as suppressors of the HR and other plant responses
associated with defence. The HR elicited by several dif-
ferent Avr proteins were suppressed by the P. syringae
effectors AvrPphEPto, AvrPpiB1Pto, AvrPtoB, AvrRpt2,
HopPtoD2, HopPtoE, HopPtoF (an AvrPphF homologue)
and HopPtoN (Lopez-Solanilla et al., 2004; Abramovitch
et al., 2003; Axtell and Staskawicz, 2003; Bretz et al.,
2003; Espinosa et al., 2003; Mackey et al., 2003; Jamir
et al., 2004). A subset of these also has been shown to
suppress other hallmarks of plant defence (Bretz et al.,
2003; Chen et al., 2004; Jamir et al., 2004). Moreover,
AvrPphEPto, HopPtoE, AvrPtoB, HopPtoF and HopPtoG
suppressed Bax-induced PCD in yeast and plants, and

induction of the PR transcript PR1a (Jamir et al., 2004).
AvrPtoB also suppressed the Bax-dependent PCD in
plants and as well as stress-induced PCD in yeast (Abra-
movitch et al., 2003). While the mechanism of suppres-
sion is unknown, suppression of PCD pathways in yeast
suggests that these effectors may act on conserved path-
ways in eukaryotes.

Some type III effectors are able to suppress basal
defences triggered by PAMPs. For example, Hauck et al.
(2003) found that transgenically expressed AvrPto in Ara-
bidopsis suppressed the expression of a set of genes
predicted to encode proteins that are secreted cell wall
and defence proteins, which are normally expressed in a
manner independent of SA. Moreover, when P. syringae
TTSS-defective mutants were infected into AvrPto- or
AvrRpt2-expressing plants these mutants grew to signifi-
cantly higher levels than control strains suggesting that
plant defences induced by these mutants were sup-
pressed by both AvrRpt2 and AvrPto (Hauck et al., 2003;
Chen et al., 2004). Recently, DebRoy et al. (2004) have
shown that the P. syringae effectors AvrE and HopPtoM
suppress SA-dependent basal defences. Characterization
of other type III effectors to determine whether they sup-
press SA-dependent or -independent defence responses
(or both) will help identify the plant targets of these effec-
tors. A listing of plant pathogen type III effectors that
appear to have a role in suppression of innate immunity
has been recently published (Alfano and Collmer, 2004).

Several caveats should be noted regarding effectors
that possess suppressor activity: many of the experiments
were carried out in heterologous systems (e.g. yeast); or
in conditions where the effector displaying the suppress-
ing activity was overexpressed; and, finally, many of the
mutants defective in effectors that suppress the HR do not
obviously alter their host range (although, in many cases
this was not tested), which would be predicted if individual
suppressors were required for growth on a specific host
plant. Another paradox associated with several of the
effectors that suppress defence response is that they can
also form necrotic lesions in compatible hosts (Badel
et al., 2003; DebRoy et al., 2004; Lopez-Solanilla et al.,
2004). These lesions may represent a late HR resulting
from latent recognition of these effectors by the plant’s
surveillance system. A recent report demonstrates that
both the HR and necrotic lesions caused by P. syringae
require a MAPK pathway suggesting that they may be
related responses (del Pozo et al., 2004).

There has been substantial progress on the identifica-
tion of enzymatic activities of plant pathogen type III effec-
tors (Innes, 2003; Alfano and Collmer, 2004; Chang et al.,
2004). A growing number of these are active or predicted
cysteine proteases (Shao et al., 2002; Axtell et al., 2003;
Hotson et al., 2003; Lopez-Solanilla et al., 2004). While
the roles that many of these cysteine proteases play in
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virulence are unknown, there is evidence that one role for
this group of effectors is defence suppression. For exam-
ple, the P. s. pv. phaseolicola AvrPphB cysteine protease
targets the Arabidopsis PBS1 kinase, a protein involved
in R protein-mediated defences (Shao et al., 2003). The
P. s. tomato HopPtoN effector, a cysteine protease
belonging to the same clad as AvrPphB, suppresses an
Avr-triggered HR (Lopez-Solanilla et al., 2004).

One plant pathogen type III effector that is particularly
noteworthy is HopPtoD2 from P. s. pv. tomato DC3000.
When HopPtoD2 is expressed in P. s. pv. phaseolicola, it
suppresses the non-host HR, PR1 gene expression and
the oxidative burst (Bretz et al., 2003; Espinosa et al.,
2003). Importantly, HopPtoD2 was also demonstrated to
possess protein tyrosine phosphatase (PTP) activity. We
are not aware of any reports of tyrosine phosphorylated
proteins in plants other than the MAPKs (Zhang and Kles-
sig, 2001), which are phosphorylated at both threonine
and tyrosine. As noted above, MAPK pathways play
important roles in signal transduction pathways controlling
plant defence (Zhang and Klessig, 2001). An HR-like
response is produced when a constitutively active tobacco
MAPKK (NtMEK2DD) is transiently expressed in plants
(Yang et al., 2001). Interestingly, when HopPtoD2 is coex-
pressed in plants with NtMEK2DD the HR-like response is
suppressed suggesting that the host cell target(s) of
HopPtoD2 is downstream of this MAPKK (Espinosa et al.,
2003). This MAPK pathway is activated by a number of
Avr proteins and the Arabidopsis MAPK homologues
AtMPK3/AtMPK6 are also involved in the response to the
PAMP flagellin (Zhang and Klessig, 2001; Asai et al.,
2002). Thus, it is plausible that HopPtoD2 acts at a point
of convergence of signal transduction pathways that are
utilized by both Avr-triggered and PAMP-triggered defence
responses. Figure 2 shows possible sites of action in the
plant defence signal transduction pathways for type III
effectors that suppress innate immunity.

Animal pathogen type III effectors have also been
shown to suppress innate immunity. Two type III effectors,
SptP and YopH, from S. typhimurium and Yersinia spp.,
respectively, are also PTPs similar to HopPtoD2 (Guan
and Dixon, 1990; Kaniga et al., 1996). Both of these effec-
tors, like many animal pathogen type III effectors, sup-
press actin polymerization, which inhibits phagocytosis
and prevents bacterial uptake by animal cells (Andersson
et al., 1996; Fu and Galán, 1998). YopH is also known to
downregulate the proinflammatory response (Boland and
Cornelis, 1998; Viboud et al., 2003), which is probably at
least partially due to the suppression of the synthesis of
the monocyte chemoattractant protein 1, a chemokine
involved in macrophage recruitment to the sites of infec-
tion (Sauvonnet et al., 2002a). YopH is also responsible
for the ability of Yersinia to prevent T and B cell activation
and therefore inhibiting adaptive immunity as well (Yao

et al., 1999). Recently, the Lck kinase, a protein involved
in T cell receptor signalling, was shown to be a substrate
of YopH (Alonso et al., 2004). This is consistent with sup-
pression of innate and adaptive immunity by preventing T
cell activation.

SptP is a multifunctional effector with a GTPase activat-
ing protein domain in its N-terminal half and a PTP domain
in its C-terminal half (Kaniga et al., 1996). Murli et al.
(2001) showed that S. typhimurium sptP mutants acti-
vated Erk MAPK pathways to higher levels suggesting that
SptP modulated this MAPK pathway. SptP appears to
inhibit the Erk MAPK pathway by interfering with Raf
kinase activation (Lin et al., 2003). Salmonella is known
to trigger proinflammatory cytokines in animal cells
through the activation of Erk, Jnk and p38 MAPK path-
ways (Hobbie et al., 1997). SptP also downregulates
secretion of the proinflammatory cytokine IL-8 (Haraga
and Miller, 2003), which is consistent with it acting as a
suppressor of animal innate immunity. Interestingly, SptP
also inhibits the p38 MAPK pathway in Caenorhabditis
elegans and a Salmonella sptP mutant is reduced in its
ability to kill C. elegans suggesting a role in virulence in
this heterologous pathosystem (Tenor et al., 2004). These

Fig. 2. Potential sites of action of plant pathogen type III effectors in 
innate immunity signal transduction pathways in plants. Bacterial 
plant pathogens inject many different type III effectors (i.e. Hops) into 
plant cells. Some type III effectors (i.e. Avr proteins depicted here as 
a green object) are recognized by plant R proteins triggering SA-
dependent and SA-independent defences. The plant cell is capable 
of recognizing the flagellin PAMP with the receptor-like kinase (RLK) 
FLS2. Other PAMPs are probably recognized by other plant RLKs. 
Type III effectors that act as defence suppressors can act at unique 
parts of the innate immunity signal transduction pathways (e.g. 
AvrRpt2 suppression of the AvrRpm1-triggered defences) (1); or oth-
ers may act at convergence point of different signal transduction 
pathways (e.g. HopPtoD2 suppression of a MAPK pathway) (2); cer-
tain type III effectors such as AvrBs3 are localized to the nucleus and 
modify eukaryotic transcription (Buttner and Bonas, 2003) (3); type 
III effectors may also act post-transcriptionally to suppress Avr-
triggered (4) and PAMP-triggered outputs (5), both of which result 
from SA-dependent and SA-independent responses. See text for 
additional details. This figure was modified from Alfano and Collmer 
(2004).
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results indicate that SptP targets MAPK pathways
involved in innate immunity (Kim et al., 2002; Aballay
et al., 2003).

The Yersinia YopJ/P type III effector also suppresses
animal innate immunity. YopJ belongs to a large family of
type III effectors that are cysteine proteases that are well
distributed in animal and plant pathogens (Orth, 2002).
The first clue that YopJ suppressed innate immunity was
that Yersinia was capable of suppressing the proinflam-
matory cytokine tumour necrosis factor a (TNF-a) that
was induced by several MAPK pathways activated after
infection (Ruckdeschel et al., 1997). YopJ/P was shown by
several groups to be capable of suppressing both NF-kB
and TNF-a in macrophages (Boland and Cornelis, 1998;
Palmer et al., 1998; Ruckdeschel et al., 1998; Schesser
et al., 1998). YopJ also blocks several signal transduction
pathways that activate the CREB transcription factor
(Meijer et al., 2000). This transcription factor is activated
by the LPS PAMP indicating that YopJ suppresses PAMP-
triggered innate immunity. How does YopJ cause these
effects? YopJ blocks members of a superfamily of MAP-
KKs needed to activate MAPK pathways induced in mam-
malian cells by pathogens, and the IkB complex, which is
required for activation of NF-kB (Orth et al., 1999). YopJ
is an isopeptidase that can use proteins conjugated to
small ubiquitin-related modifier (SUMO) as substrates
cleaving the isopeptide bond that links SUMO to the target
protein (Orth et al., 2000). Cleaving a SUMO group from
a protein can alter the protein’s activity. However, why
YopJ/P’s cysteine protease activity is required for MAPK
and NF-kB signalling and how this contributes to its ability
to suppress the mammalian immune system is currently
unknown.

There are other animal pathogen type III effectors that
are capable of suppressing innate immunity. Recently, the
Salmonella SspH 1 type III effector was shown to localize
to the nucleus where it inhibits NF-kB resulting in down-
regulation of IL-8 production (Haraga and Miller, 2003).
SspH 1 belongs to a family of type III effectors that contain
LRR predicted to be involved in protein–protein interac-
tions. Several of these, including the Yersinia YopM and
the Shigella IpaH9.8, have also been shown to localize
the nucleus (Skrzypek et al., 1998; Toyotome et al., 2001).
YopM’s LRRs are required for localization to the nucleus
(Benabdillah et al., 2004). IpaH9.8, like SspH 1, inhibits
NF-kB suggesting that this group of effectors may modify
eukaryotic transcription (Haraga and Miller, 2003). Con-
sistent with this idea is the observation that a Yersinia
yopM mutant alters the transcription profile of macroph-
ages compared with the transcription profile of macroph-
ages challenged with wild-type bacteria (Sauvonnet et al.,
2002b). Type III effectors that act as eukaryotic defence
suppressors do not appear to be limited to pathogens.
Recently, NopL, a type III effector from the symbiont

Rhizobium sp. NGR234, was found to suppress the induc-
tion of PR genes in tobacco suggesting that symbionts
may also benefit from suppressing plant innate immunity
(Bartsev et al., 2004).

Concluding remarks

The ability to avoid eukaryotic surveillance systems of the
innate immune system was probably a critical develop-
ment in the evolution of bacterial pathogenicity. In the
animal world, this was made doubly complex by an adap-
tive immune system that could recognize a bewildering
array of molecules and specific immune cells (i.e. mac-
rophages) that have the capacity to engulf microorgan-
isms. At first glance, plants seem to be an easier mark
because their defence systems rely only on premade
defences and a surveillance system that recognizes both
conserved molecules on microorganisms (PAMPs) and
specific products of pathogens (Avr proteins). However,
this surveillance system is surprisingly complex and suc-
cessful, which may explain why there are relatively few
bacterial species that can invade plants. It seems logical
to assume that the ability to recognize PAMPs came
before Avr recognition in the evolution of plant immunity.
Figure 3 shows a possible sequence of events that
allowed Gram-negative bacterial pathogens to evolve cen-
tred on the horizontal acquisition of a TTSS. In this model,
acquisition of the TTSS and type III effectors that disable
the PAMP-based innate immune system is the central
event that allowed these bacteria to evade plant defences.
It seems likely that after pathogens were successful in
disabling PAMP-triggered surveillance systems, the plant
countered by evolving the ability to recognize Avr proteins
of pathogens. To counteract, the pathogen acquired many
type III effectors, which are probably functionally redun-
dant, and the plant evolved many PRRs that could recog-
nized as many possible ‘looks’ the pathogen gives the
plant. Understanding plant surveillance systems and type
III effectors that disable it is imperative if we are to under-
stand the pathogenicity of plants.

In a larger context, the study of bacterial pathogenicity
of plants and animals has benefited from a comparative
pathobiology approach. For example, the similarity of
NODs to NBS-LRR R proteins probably aided the discov-
ery that NODs were involved in pathogen recognition.
Further comparative analyses of the protein complexes
involved in PRR perception and their downstream signal
transduction pathways will probably increase our under-
standing of both pathosystems. And many other points of
comparison remain. For example, is the YopJ/P-induced
apoptosis of macrophages (Mills et al., 1997; Monack
et al., 1997) equivalent to the Avr-induced PCD (i.e. HR)
in plants? That is, is the PCD of a macrophage a form of
defence or a virulence strategy of the pathogen? The
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Yersinia YopB type III translocator does trigger proinflam-
matory responses in host cells similar to PAMPs (Viboud
et al., 2003), and potentially analogous to Avr proteins.
Plant and animal bacterial pathogens now have groups of
type III effectors that have similar activities (e.g. cysteine

proteases and tyrosine phosphatases) and a subset of
defence suppressors. Thus, comparing the activities and
targets of type III suppressors in plant and animal patho-
systems should lead to a greater understanding of the
innate immune system in eukaryotes.
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