2,337 research outputs found

    Influence of topological excitations on Shapiro steps and microwave dynamical conductance in bilayer exciton condensates

    Full text link
    The quantum Hall state at total filling factor νT=1\nu_T=1 in bilayer systems realizes an exciton condensate and exhibits a zero-bias tunneling anomaly, similar to the Josephson effect in the presence of fluctuations. In contrast to conventional Josephson junctions, no Fraunhofer diffraction pattern has been observed, due to disorder induced topological defects, so-called merons. We consider interlayer tunneling in the presence of microwave radiation, and find Shapiro steps in the tunneling current-voltage characteristic despite the presence of merons. Moreover, the Josephson oscillations can also be observed as resonant features in the microwave dynamical conductance

    Thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions and hysteresis

    Get PDF
    A crossover at a temperature T* in the temperature dependence of the width s of the distribution of switching currents of moderately damped Josephson junctions has been reported in a number of recent publications, with positive ds/dT and IV characteristics associated with underdamped behaviour for lower temperatures T<T*, and negative ds/dT and IV characteristics resembling overdamped behaviour for higher temperatures T>T*. We have investigated in detail the behaviour of Josephson junctions around the temperature T* by using Monte Carlo simulations including retrapping from the running state into the supercurrent state as given by the model of Ben-Jacob et al. We develop discussion of the important role of multiple escape and retrapping events in the moderate-damping regime, in particular considering the behaviour in the region close to T*. We show that the behaviour is more fully understood by considering two crossover temperatures, and that the shape of the distribution and s(T) around T*, as well as at lower T<T*, are largely determined by the shape of the conventional thermally activated switching distribution. We show that the characteristic temperatures T* are not unique for a particular Josephson junction, but have some dependence on the ramp rate of the applied bias current. We also consider hysteresis in moderately damped Josephson junctions and discuss the less commonly measured distribution of return currents for a decreasing current ramp. We find that some hysteresis should be expected to persist above T* and we highlight the importance, even well below T*, of accounting properly for thermal fluctuations when determining the damping parameter Q.Comment: Accepted for publication in PR

    Correlated metallic two particle bound states in quasiperiodic chains

    Full text link
    Single particle states in a chain with quasiperiodic potential show a metal-insulator transition upon the change of the potential strength. We consider two particles with local interaction in the single particle insulating regime. The two particle states change from being localized to delocalized upon an increase of the interaction strength to a nonperturbative finite value. At even larger interaction strength the states become localized again. This transition of two particle bound states into a correlated metal is due to a resonant mixing of the noninteracting two particle eigenstates. In the discovered correlated metal states two particles move coherently together through the whole chain, therefore contributing to a finite conductivity.Comment: 4 pages, 4 figure

    Probing the superconducting condensate on a nanometer scale

    Full text link
    Superconductivity is a rare example of a quantum system in which the wavefunction has a macroscopic quantum effect, due to the unique condensate of electron pairs. The amplitude of the wavefunction is directly related to the pair density, but both amplitude and phase enter the Josephson current : the coherent tunneling of pairs between superconductors. Very sensitive devices exploit the superconducting state, however properties of the {\it condensate} on the {\it local scale} are largely unknown, for instance, in unconventional high-Tc_c cuprate, multiple gap, and gapless superconductors. The technique of choice would be Josephson STS, based on Scanning Tunneling Spectroscopy (STS), where the condensate is {\it directly} probed by measuring the local Josephson current (JC) between a superconducting tip and sample. However, Josephson STS is an experimental challenge since it requires stable superconducting tips, and tunneling conditions close to atomic contact. We demonstrate how these difficulties can be overcome and present the first spatial mapping of the JC on the nanometer scale. The case of an MgB2_2 film, subject to a normal magnetic field, is considered.Comment: 7 pages, 6 figure

    Evidence of Josephson-coupled superconducting regions at the interfaces of Highly Oriented Pyrolytic Graphite

    Full text link
    Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current-Voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces, reaching zero resistance at low enough temperatures. The overall behavior indicates the existence of superconducting regions with critical temperatures above 100 K at the internal interfaces of oriented pyrolytic graphite.Comment: 6 Figures, 5 page

    Phase diffusion in graphene-based Josephson junctions

    Full text link
    We report on graphene-based Josephson junctions with contacts made from lead. The high transition temperature of this superconductor allows us to observe the supercurrent branch at temperatures up to 2\sim 2 K, at which point we can detect a small, but non-zero, resistance. We attribute this resistance to the phase diffusion mechanism, which has not been yet identified in graphene. By measuring the resistance as a function of temperature and gate voltage, we can further characterize the nature of electromagnetic environment and dissipation in our samples.Comment: 4 pages, 3 figures, PR

    Current and universal scaling in anomalous transport

    Get PDF
    Anomalous transport in tilted periodic potentials is investigated within the framework of the fractional Fokker-Planck dynamics and the underlying continuous time random walk. The analytical solution for the stationary, anomalous current is obtained in closed form. We derive a universal scaling law for anomalous diffusion occurring in tilted periodic potentials. This scaling relation is corroborated with precise numerical studies covering wide parameter regimes and different shapes for the periodic potential, being either symmetric or ratchet-like ones

    Mechanism for flux guidance by micrometric antidot arrays in superconducting films

    Get PDF
    A study of magnetic flux penetration in a superconducting film patterned with arrays of micron sized antidots (microholes) is reported. Magneto-optical imaging (MOI) of a YBCO film shaped as a long strip with perpendicular antidot arrays revealed both strong guidance of flux, and at the same time large perturbations of the overall flux penetration and flow of current. These results are compared with a numerical flux creep simulation of a thin superconductor with the same antidot pattern. To perform calculations on such a complex geometry, an efficient numerical scheme for handling the boundary conditions of the antidots and the nonlocal electrodynamics was developed. The simulations reproduce essentially all features of the MOI results. In addition, the numerical results give insight into all other key quantities, e.g., the electrical field, which becomes extremely large in the narrow channels connecting the antidots.Comment: 8 pages, 7 figure

    Local superfluid densities probed via current-induced superconducting phase gradients

    Full text link
    We have developed a superconducting phase gradiometer consisting of two parallel DNA-templated nanowires connecting two thin-film leads. We have ramped the cross current flowing perpendicular to the nanowires, and observed oscillations in the lead-to-lead resistance due to cross-current-induced phase differences. By using this gradiometer we have measured the temperature and magnetic field dependence of the superfluid density and observed an amplification of phase gradients caused by elastic vortex displacements. We examine our data in light of Miller-Bardeen theory of dirty superconductors and a microscale version of Campbell's model of field penetration.Comment: 5 pages, 6 figure

    Detection of Complex Networks Modularity by Dynamical Clustering

    Full text link
    Based on cluster de-synchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN){\cal O}(KN) on a generic graph with NN nodes and KK links.Comment: 5 pages, 2 figures. Version accepted for publication on PRE Rapid Communications: figures changed and text adde
    corecore