1,014 research outputs found

    Photoemission Spectral Weight Transfer and Mass Renormalization in the Fermi-Liquid System La1x_{1-x}Srx_xTiO3+y/2_{3+y/2}

    Full text link
    We have performed a photoemission study of La1x_{1-x}Srx_xTiO3+y/2_{3+y/2} near the filling-control metal-insulator transition (MIT) as a function of hole doping. Mass renormalization deduced from the spectral weight and the width of the quasi-particle band around the chemical potential μ\mu is compared with that deduced from the electronic specific heat. The result implies that, near the MIT, band narrowing occurs strongly in the vicinity of μ\mu. Spectral weight transfer occurs from the coherent to the incoherent parts upon antiferromagnetic ordering, which we associate with the partial gap opening at μ\mu.Comment: 4 pages, 3 figure

    Chemical Potential Shift in Nd2x_{2-x}Cex_{x}CuO4_{4}: Contrasting Behaviors of the Electron- and Hole-Doped Cuprates

    Full text link
    We have studied the chemical potential shift in the electron-doped superconductor Nd2x_{2-x}Cex_{x}CuO4_{4} by precise measurements of core-level photoemission spectra. The result shows that the chemical potential monotonously increases with electron doping, quite differently from La2x_{2-x}Srx_{x}CuO4_{4}, where the shift is suppressed in the underdoped region. If the suppression of the shift in La2x_{2-x}Srx_{x}CuO4_{4} is attributed to strong stripe fluctuations, the monotonous increase of the chemical potential is consistent with the absence of stripe fluctuations in Nd2x_{2-x}Cex_{x}CuO4_{4}. The chemical potential jump between Nd2_{2}CuO4_{4} and La2_{2}CuO4_{4} is found to be much smaller than the optical band gaps.Comment: 4 pages, 5 figure

    Enhancement of electronic anomalies in iron-substituted La_2-x_Sr_x_Cu_1-y_Fe_y_O_4_ around x=0.22

    Full text link
    We have measured the temperature dependences of Rho and Chi for Fe-substituted La_2-x_Sr_x_Cu_1-y_Fe_y_O_4_ in the overdoped regime, in order to investigate Fe-substitution effects on electronic properties around x=0.22. From the Rho measurements, it has been found around x=0.22 that the values of Rho are large at room temperature and that Rho exhibits a pronounced upturn at low temperatures. Moreover, from the Rho and Chi measurements, it has been found that T_c_ is anomalously depressed around x=0.22. These results indicate that the electronic anomalies around x=0.22 are enhanced by Fe substitution, which might be related to the development of stripe correlations by Fe substitution.Comment: 7 pages, 3 figure

    Testing the validity of THz reflection spectra by dispersion relations

    Full text link
    Complex response function obtained in reflection spectroscopy at terahertz range is examined with algorithms based on dispersion relations for integer powers of complex reflection coefficient, which emerge as a powerful and yet uncommon tools in examining the consistency of the spectroscopic data. It is shown that these algorithms can be used in particular for checking the success of correction of the spectra by the methods of Vartiainen et al [1] and Lucarini et al [2] to remove the negative misplacement error in the terahertz time-domain spectroscopy.Comment: 17 pages, 4 figure

    Charge ordering and chemical potential shift in La2x_{2-x}Srx_xNiO4_4 studied by photoemission spectroscopy

    Full text link
    We have studied the chemical potential shift in La2x_{2-x}Srx_xNiO4_4 and the charge ordering transition in La1.67_{1.67}Sr0.33_{0.33}NiO4_4 by photoemission spectroscopy. The result shows a large (\sim 1 eV/hole) downward shift of the chemical potential with hole doping in the high-doping regime (δ\delta \gtrsim 0.33) while the shift is suppressed in the low-doping regime (δ\delta \lesssim 0.33). This suppression is attributed to a segregation of doped holes on a microscopic scale when the hole concentration is lower than δ1/3\delta \simeq 1/3. In the δ=1/3\delta = 1/3 sample, the photoemission intensity at the chemical potential vanishes below the charge ordering transition temperature TCO=T_{\rm CO}= 240 K.Comment: 5 pages, 4 figure

    Evolution of the electronic structure from electron-doped to hole-doped states in the two-dimensional Mott-Hubbard system La1.17-xPbxVS3.17

    Full text link
    The filling-controlled metal-insulator transition (MIT) in a two-dimensional Mott-Hubbard system La1.17-xPbxVS3.17 has been studied by photoemission spectroscopy. With Pb substitution x, chemical potential mu abruptly jumps by ~ 0.07 eV between x=0.15 and 0.17, indicating that a charge gap is opened at x ~= 0.16 in agreement with the Mott insulating state of the d2 configuration. When holes or electrons are doped into the Mott insulator of x ~= 0.16, the gap is filled and the photoemission spectral weight at mu, rho(mu), gradually increases in a similar way to the electronic specific heat coefficient, although the spectral weight remains depressed around mu compared to that expected for a normal metal, showing a pseudogap behavior in the metallic samples. The observed behavior of varrho(mu)->0 for x->0.16 is contrasted with the usual picture that the electron effective mass of the Fermi-liquid system is enhanced towards the metal-insulator boundary. With increasing temperature, the gap or the pseudogap is rapidly filled up, and the spectra at T=300 K appears to be almost those of a normal metal. Near the metal-insulator boundary, the spectra around mu are consistent with the formation of a Coulomb gap, suggesting the influence of long-range Coulomb interaction under the structural disorder intrinsic to this system.Comment: 8 pages, 12 figure

    Pulsed UCN production using a Doppler shifter at J-PARC

    Get PDF
    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-m/s\mathrm{m/s} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-m/s\mathrm{m/s} velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is 8.33 Hz8.33~\mathrm{Hz} and the time width of the pulse at production is 4.4 ms4.4~\mathrm{ms}. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW1~\mathrm{MW}-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm58~\mathrm{nm} is 1.6×102 cps1.6 \times 10^{2}~\mathrm{cps}, while that of the true UCNs is 80 cps80~\mathrm{cps}. The spatial density at production is 1.4 UCN/cm31.4~\mathrm{UCN/cm^{3}}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment (nEDM).Comment: 32 pages, 15 fugures. A grammatical error was fixe

    Electron-Like Fermi Surface and Remnant (pi,0) Feature in Overdoped La1.78Sr0.22CuO4

    Full text link
    We have performed an angle-resolved photoemission study of overdoped La1.78Sr0.22CuO4, and have observed sharp nodal quasiparticle peaks in the second Brillouin zone that are comparable to data from Bi2Sr2CaCu2O8+d. The data analysis using energy distribution curves, momentum distribution curves and intensity maps all show evidence of an electron-like Fermi surface, which is well explained by band structure calculations. Evidence for many-body effects are also found in the substantial spectral weight remaining below the Fermi level around (pi,0), where the band is predicted to lie above EF.Comment: 4 pages, 4 figure
    corecore