The filling-controlled metal-insulator transition (MIT) in a two-dimensional
Mott-Hubbard system La1.17-xPbxVS3.17 has been studied by photoemission
spectroscopy. With Pb substitution x, chemical potential mu abruptly jumps by ~
0.07 eV between x=0.15 and 0.17, indicating that a charge gap is opened at x ~=
0.16 in agreement with the Mott insulating state of the d2 configuration. When
holes or electrons are doped into the Mott insulator of x ~= 0.16, the gap is
filled and the photoemission spectral weight at mu, rho(mu), gradually
increases in a similar way to the electronic specific heat coefficient,
although the spectral weight remains depressed around mu compared to that
expected for a normal metal, showing a pseudogap behavior in the metallic
samples. The observed behavior of varrho(mu)->0 for x->0.16 is contrasted with
the usual picture that the electron effective mass of the Fermi-liquid system
is enhanced towards the metal-insulator boundary. With increasing temperature,
the gap or the pseudogap is rapidly filled up, and the spectra at T=300 K
appears to be almost those of a normal metal. Near the metal-insulator
boundary, the spectra around mu are consistent with the formation of a Coulomb
gap, suggesting the influence of long-range Coulomb interaction under the
structural disorder intrinsic to this system.Comment: 8 pages, 12 figure