480 research outputs found

    Optical echo in photonic crystals

    Get PDF
    The dynamics of photonic wavepacket in the effective oscillator potential is studied. The oscillator potential is constructed on a base of one dimensional photonic crystal with a period of unit cell adiabatically varied in space. The structure has a locally equidistant discrete spectrum. This leads to an echo effect, i.e. the periodical reconstruction of the packet shape. The effect can be observed in a nonlinear response of the system. Numerical estimations for porous-silicon based structures are presented for femtosecond Ti:Sapphire laser pump.Comment: 4 page

    Narrowing the window for millicharged particles by CMB anisotropy

    Full text link
    We calculate the cosmic microwave background (CMB) anisotropy spectrum in models with millicharged particles of electric charge q\sim 10^{-6}-10^{-1} in units of electron charge. We find that a large region of the parameter space for the millicharged particles exists where their effect on the CMB spectrum is similar to the effect of baryons. Using WMAP data on the CMB anisotropy and assuming Big Bang nucleosynthesis value for the baryon abundance we find that only a small fraction of cold dark matter, Omega_{mcp}h_0^2 < 0.007 (at 95% CL), may consists of millicharged particles with the parameters (charge and mass) from this region. This bound significantly narrows the allowed range of the parameters of millicharged particles. In models without paraphoton millicharged particles are now excluded as a dark matter candidate. We also speculate that recent observation of 511 keV gamma-rays from the Galactic bulge may be an indication that a (small) fraction of CDM is comprised of the millicharged particles.Comment: 10 pages, 3 figures; v2: journal version, references adde

    Dehydration of Amides to Nitriles

    Full text link
    The authors thank Russian Science Foundation for grant № 18-73-10156

    Tunka-Rex: the Cost-Effective Radio Extension of the Tunka Air-Shower Observatory

    Full text link
    Tunka-Rex is the radio extension of the Tunka cosmic-ray observatory in Siberia close to Lake Baikal. Since October 2012 Tunka-Rex measures the radio signal of air-showers in coincidence with the non-imaging air-Cherenkov array Tunka-133. Furthermore, this year additional antennas will go into operation triggered by the new scintillator array Tunka-Grande measuring the secondary electrons and muons of air showers. Tunka-Rex is a demonstrator for how economic an antenna array can be without losing significant performance: we have decided for simple and robust SALLA antennas, and we share the existing DAQ running in slave mode with the PMT detectors and the scintillators, respectively. This means that Tunka-Rex is triggered externally, and does not need its own infrastructure and DAQ for hybrid measurements. By this, the performance and the added value of the supplementary radio measurements can be studied, in particular, the precision for the reconstructed energy and the shower maximum in the energy range of approximately 1017101810^{17}-10^{18}\,eV. Here we show first results on the energy reconstruction indicating that radio measurements can compete with air-Cherenkov measurements in precision. Moreover, we discuss future plans for Tunka-Rex.Comment: Proceeding of UHECR 2014, Springdale, Utah, USA, accepted by JPS Conference Proceeding

    Continuous Time Quantum Monte Carlo Method for Fermions: Beyond Auxiliary Field Framework

    Full text link
    Numerically exact continuous-time Quantum Monte Carlo algorithm for finite fermionic systems with non-local interactions is proposed. The scheme is particularly applicable for general multi-band time-dependent correlations since it does not invoke Hubbard-Stratonovich transformation. The present determinantal grand-canonical method is based on a stochastic series expansion for the partition function in the interaction representation. The results for the Green function and for the time-dependent susceptibility of multi-orbital super-symmetric impurity model with a spin-flip interaction are presented

    Dispersionful analogues of Benney's equations and NN-wave systems

    Full text link
    We recall Krichever's construction of additional flows to Benney's hierarchy, attached to poles at finite distance of the Lax operator. Then we construct a ``dispersionful'' analogue of this hierarchy, in which the role of poles at finite distance is played by Miura fields. We connect this hierarchy with NN-wave systems, and prove several facts about the latter (Lax representation, Chern-Simons-type Lagrangian, connection with Liouville equation, τ\tau-functions).Comment: 12 pages, latex, no figure

    Nonlinear thermoelectric response of quantum dots: renormalized dual fermions out of equilibrium

    Full text link
    The thermoelectric transport properties of nanostructured devices continue to attract attention from theorists and experimentalist alike as the spatial confinement allows for a controlled approach to transport properties of correlated matter. Most of the existing work, however, focuses on thermoelectric transport in the linear regime despite the fact that the nonlinear conductance of correlated quantum dots has been studied in some detail throughout the last decade. Here, we review our recent work on the effect of particle-hole asymmetry on the nonlinear transport properties in the vicinity of the strong coupling limit of Kondo-correlated quantum dots and extend the underlying method, a renormalized superperturbation theory on the Keldysh contour, to the thermal conductance in the nonlinear regime. We determine the charge, energy, and heat current through the nanostructure and study the nonlinear transport coefficients, the entropy production, and the fate of the Wiedemann-Franz law in the non-thermal steady-state. Our approach is based on a renormalized perturbation theory in terms of dual fermions around the particle-hole symmetric strong-coupling limit.Comment: chapter contributed to 'New Materials for Thermoelectric Applications: Theory and Experiment' Springer Series: NATO Science for Peace and Security Series - B: Physics and Biophysics, Veljko Zlatic (Editor), Alex Hewson (Editor). ISBN: 978-9400749863 (2012

    Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    Get PDF
    We reconstructed the energy and the position of the shower maximum of air showers with energies E100E \gtrsim 100 PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and XmaxX_{\mathrm{max}} values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 1515 %, and exhibits a 2020 % uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For XmaxX_{\mathrm{max}}, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the XmaxX_{\mathrm{max}} resolution of Tunka-Rex is approximately 4040 g/cm2^2. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations.Comment: accepted for publication by JCA
    corecore