85 research outputs found

    Spontaneous Extraskeletal Osteosarcoma in the Stomach of an Aged F344 Rat

    Get PDF
    Extraskeletal osteosarcoma is a very rare tumor in humans and animals including rats. This paper describes a case of extraskeletal osteosarcoma observed in the glandular stomach of an aged female Fischer 344 rat. Grossly, a whitish solid mass was observed at the greater curvature of the glandular stomach. Histologically, the tumor consisted of both atypical polygonal and pleomorphic spindle-shaped cells, with pleomorphic nuclei, and it contained variable amounts of osteoids and small clumps of mature bone tissue. In addition, mitotic figures were frequently observed. Neither invasion of the muscle layer or vessels in the stomach nor metastasis to distant organs was detected. There were no skeletal tumors in the body. Immunohistochemically, the tumor cells were positive for osteocalcin, osteonectin, vimentin and S-100 protein. Judging from these results, the present tumor was diagnosed as extraskeletal osteosarcoma. This is the first report of spontaneous extraskeletal osteosarcoma arising from the stomach in a rat

    Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    Get PDF
    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis

    Differential Requirement for Utrophin in the Induced Pluripotent Stem Cell Correction of Muscle versus Fat in Muscular Dystrophy Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs) into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin). In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent) non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle

    A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-γ and meta-iodobenzylguanidine

    Get PDF
    BACKGROUND: Therapeutic options to effectively inhibit growth and spread of neuroendocrine gastrointestinal tumors are still limited. As both meta-iodobenzylguanidine (MIBG) and interferon-γ (IFNγ) cause antineoplastic effects in neuroendocrine gastrointestinal tumor cells, we investigated the antiproliferative effects of the combination of IFNγ and non-radiolabeled MIBG in neuroendocrine gut STC-1 and pancreatic carcinoid BON tumor cells. METHODS AND RESULTS: IFNγ receptors were expressed in both models. IFNγ dose- and time-dependently inhibited the growth of both STC-1 and of BON tumor cells with IC(50)-values of 95 ± 15 U/ml and 135 ± 10 U/ml, respectively. Above 10 U/ml IFNγ induced apoptosis-specific caspase-3 activity in a time-dependent manner in either cell line and caused a dose-dependent arrest in the S-phase of the cell cycle. Furthermore, IFNγ induced cytotoxic effects in NE tumor cells. The NE tumor-targeted drug MIBG is selectively taken up via norepinephrine transporters, thereby specifically inhibiting growth in NE tumor cells. Intriguingly, IFNγ treatment induced an upregulation of norepinephrine transporter expression in neuroendocrine tumors cells, as determined by semi-quantitative RT-PCR. Co-application of sub-IC(50 )concentrations of IFNγ and MIBG led to additive growth inhibitory effects, which were mainly due to increased cytotoxicity and S-phase arrest of the cell cycle. CONCLUSION: Our data show that IFNγ exerts antiproliferative effects on neuroendocrine gastrointestinal tumor cells by inducing cell cycle arrest, apoptosis and cytotoxicity. The combination of IFNγ with the NE tumor-targeted agent MIBG leads to effective growth control at reduced doses of either drug. Thus, the administration of IFNγ alone and more so, in combination with MIBG, is a promising novel approach in the treatment of neuroendocrine gastrointestinal tumors

    Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain

    Get PDF
    Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting

    Mesoangioblasts at 20: from the embryonic aorta to the patient bed

    Get PDF
    In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration
    • …
    corecore