613 research outputs found

    Stellar Image Interpretation System Using Artificial Neural Networks:

    Get PDF
    A supervised Artificial Neural Network (ANN) based system is being developed employing the Bi-polar function for identifying stellar images in CCD frames. It is based on feed-forward artificial neural networks with error back-propagation learning. It has been coded in C language. The learning process was performed on a 341 input pattern set, while a similar set was used for testing. The present approach has been applied on a CCD frame of the open star cluster M67. The results obtained have been discussed and compared with those derived in our previous work employing the Uni-polar function and by a package known in the astronomical community (DAOPHOT-II). Full agreement was found between the present approach, that of Elnagahy et al, and the standard astronomical data for the cluster. It has been shown that the developed technique resembles that of the Uni-Polar function, possessing a simple, much faster yet reliable approach. Moreover, neither prior knowledge on, nor initial data from, the frame to be analysed is required, as it is for DAOPHOT-II.

    A rare case report on complications in pregnancy with systemic lupus erythematosus in a post-renal transplant patient

    Get PDF
    To preview the feto-maternal outcome in post-renal transplant pregnant women with systemic lupus erythematosus (SLE). To distinguish preeclampsia from hypertension in renal transplant recipients as diagnosis is not always straightforward and all differentials need a thorough evaluation. Hypertension is a prevalent issue among kidney transplant recipients, with reported incidence rates ranging from 52% to 69%. Additionally, the occurrence of pre-eclampsia in renal transplant recipients falls within the range of 24% to 38%, demonstrating a significantly elevated risk compared to the 4-5% incidence rate seen in the general population. A 29-year-old female para 1 IUFD 1 abortion 1, in a known case of SLE with hypothyroidism with lupus nephritis with post renal transplant status with thrombocytopenia with preeclampsia with day 7 of emergency LSCS done in view of non-progress of labor with intrauterine fetal demise with abruptio placenta referred in view of query SLE flare or severe preeclamptic features with rectus sheath hematoma. Renal transplant restores fertility; thus, pregnancy requires careful planning and affected women should be managed in tertiary care obstetrics centers working in tight multidisciplinary cooperation with transplant physicians

    Preclinical Efficacy of Cabazitaxel Loaded Poly (2-alkyl cyanoacrylate) Nanoparticle Variants

    Get PDF
    \ua9 2024 Valsalakumari et al. This work is published and licensed by Dove Medical Press Limited.Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect. Methods: Cytotoxicity assays and cellular uptake of NPs by flow cytometry were performed in different breast cancer cells. Biodistribution and efficacy studies were performed in PDX models of breast cancer. Tumor associated immune cells were analyzed by multiparametric flow cytometry. Results: In vitro studies showed similar NP-induced cytotoxicity patterns despite difference in early NP internalization. On intravenous injection, the liver cleared the majority of NPs. Efficacy studies in the HBCx39 PDX model demonstrated an enhanced effect of drug-loaded PEBCA variants compared with free drug and PEHCA NPs. Furthermore, the folate conjugated PEBCA variant did not show any enhanced effects compared with the unconjugated counterpart which might be due to unfavorable orientation of folate on the NPs. Finally, analyses of the immune cell populations in tumors revealed that treatment with drug loaded PEBCA variants affected the myeloid cells, especially macrophages, contributing to an inflammatory, immune activated tumor microenvironment. Conclusion: We report for the first time, comparative efficacy of PEBCA and PEHCA NP variants in triple negative breast cancer models and show that CBZ-loaded PEBCA NPs exhibit a combined effect on tumor cells and on the tumor associated myeloid compartment, which may boost the anti-tumor response

    Endothelial apoptotic activity of angiocidin is dependent on its polyubiquitin binding activity

    Get PDF
    We recently cloned the full-length cDNA of a tumour-associated protein. The recombinant protein expressed in bacteria and referred to as angiocidin has potent antitumour activity in vivo and in vitro. Angiocidin inhibits tumour growth and angiogenesis by inducing apoptosis in endothelial cells. Based on the sequence similarity of angiocidin to S5a, one of the major polyubiquitin recognition proteins in eukaryotic cells, we postulated that the antiendothelial activity of angiocidin could be due in part to its polyubiquitin binding activity. In support of this hypothesis, we show that angiocidin binds polyubiquitin in vivo with high affinity and colocalises with ubiquitinated proteins on the surface of endothelial cells. Binding is blocked with an antiubiquitin antibody. Angiocidin treatment of endothelial cells transfected with a proteasome fluorescent reporter protein showed a dose-dependent inhibition of proteasome activity and accumulation of polyubiquitinated proteins. Full-length angiocidin bound polyubiquitin while three angiocidin recombinant proteins whose putative polyubiquitin binding sites were mutated either failed to bind polyubiquitin or had significantly diminished binding activity. The in vitro apoptotic activity of these mutants correlated with their polyubiquitin binding activity. These data strongly argue that the apoptotic activity of angiocidin is dependent on its polyubiquitin binding activity

    Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    Get PDF
    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target

    Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

    Get PDF
    BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody) with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an important angiogenic factor that regulates the induction of tumor cell-induced neovascularization and growth during the initial stages of tumorigenesis. The suppression of tumor angiogenesis and progression by erythropoietin blockade suggests that erythropoietin may constitute a potential target for the therapeutic modulation of angiogenesis in cancer

    Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium.</p> <p>Methods</p> <p>Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function.</p> <p>Results</p> <p>Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas <it>in vitro </it>and <it>in vivo</it>, and in areas of intratumor blood vessels and in micrometastatic foci.</p> <p>Conclusion</p> <p>Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.</p

    Properties of local interactions and their potential value in complementing genome-wide association studies

    Get PDF
    Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium. Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology underlying variation in complex traits
    corecore