43 research outputs found

    Effects of polyethylene glycol (PEG) on the corrosion inhibition of mild steel by cerium nitrate in chloride solution

    Get PDF
    International audienceIn this study, cerium was investigated as an inhibitor to improve the corrosion resistance of ASTM A915 mild steel in 0.1M NaCl solution. Increasing the Ce 3+ concentration up to an optimum level of 600 mg.L-1 (or 1.4 10-3 M) sharply decreased the corrosion rate (Icorr). However, the beneficial effect of cerium was lost after short immersion times at room temperature. In contrast, the addition of polyethylene glycol (PEG) to the cerium nitrate containing NaCl solutions enhanced protection through the formation of stable corrosion products and the decrease of cracks in the film formed on the surface of mild steel

    On the Corrosion Resistance of Porous Electroplated Zinc Coatings in Different Corrosive Media

    Full text link
    The corrosion resistance of an electroplated (EP) Zn coating whose surface was chemically etched to produce surface defects (pores) is investigated in this work. Impedance and DC polarisation measururements were employed to study the behaviour of such coating in various corrosive media (NaCl, NaOH and rain water). Four different faradaic relaxation processes were clearly revealed in different NaCl concentrations (from 0.1M to 1M). In the most concentrated solutions at least three relaxation processes at low frequencies (LF) appeared and were related to zinc deposition and dissolution. At lower concentrations and depending on the pH, only one process was observed. The charge transfer resistance (Rct) and the corrosion current (Icorr) were practically stable in the pH range 5 to 10. In deaerated NaCl 0.1M, the EIS diagrams showed two time-constants at very close frequencies. From the EIS diagrams the porous nature of the coating was highlighted and showed that the dissolution mechanisms occurred at the base of the pores

    Surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel

    Get PDF
    Surface enhancement of engineering materials is necessary for preventing service failure and corrosion attacks industrially. The surface modification, strengthening effect and electrochemical comparative study of Zn-Al2O3-CeO3 and Zn-TiO2-CeO3 coating on mild steel was investigated. Deposition was performed to obtain a better surface adherent coating using the electrodeposition technique. Co-deposition of mild steel resulted into surface modification attributes to the complex alloys that were developed. Films of mild steel were electrodeposited on zinc electrodes using the chloride bath solutions. The effect of deposition potentials was systematically studied using a focus ion beam scanning electron microscope (FIB-SEM) and an atomic force microscope (AFM) to observe the surface morphology, topography and the surface adherent properties of the coatings. The elemental composition and the phases evolved in composite coatings were measured by means of the energy dispersed spectrometer (EDS). The microhardness measurements and corrosion behaviours of the deposits were investigated. Weight loss measurement was conducted on the plated samples to observe the rate of corrosion and it was observed that there was severe corrosion on the controlled sample in comparison to the plated samples and that Zn-TiO2-CeO3 resisted more corrosion attacks
    corecore