22 research outputs found

    The role of homophily in the emergence of opinion controversies

    Get PDF
    Understanding the emergence of strong controversial issues in modern societies is a key issue in opinion studies. A commonly diffused idea is the fact that the increasing of homophily in social networks, due to the modern ICT, can be a driving force for opinion polariation. In this paper we address the problem with a modelling approach following three basic steps. We first introduce a network morphogenesis model to reconstruct network structures where homophily can be tuned with a parameter. We show that as homophily increases the emergence of marked topological community structures in the networks raises. Secondly, we perform an opinion dynamics process on homophily dependent networks and we show that, contrary to the common idea, homophily helps consensus formation. Finally, we introduce a tunable external media pressure and we show that, actually, the combination of homophily and media makes the media effect less effective and leads to strongly polarized opinion clusters.Comment: 24 pages, 10 figure

    A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case

    Get PDF
    We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T = 0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.Comment: 19 pages, 5 figure

    Cluster size entropy in the Axelrod model of social influence: small-world networks and mass media

    Full text link
    We study the Axelrod's cultural adaptation model using the concept of cluster size entropy, ScS_{c} that gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is unambiguously given by the maximum of the Sc(q)S_{c}(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first- or second-order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qcq_c and the number FF of cultural features in regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a new partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a new qBq-B phase diagram for the Axelrod model in regular networks.Comment: 21 pages, 7 figure

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions

    Get PDF
    We study FF coupled qq-state Potts models in a two-dimensional square lattice. The interaction between the different layers is attractive, to favour a simultaneous alignment in all of them, and its strength is fixed. The nature of the phase transition for zero field is numerically determined for F=2,3F=2,3. Using the Lee-Kosterlitz method, we find that it is continuous for F=2F=2 and q=2q=2, whereas it is abrupt for higher values of qq and/or FF. When a continuous or a weakly first-order phase transition takes place, we also analyze the properties of the geometrical clusters. This allows us to determine the fractal dimension DD of the incipient infinite cluster and to examine the finite-size scaling of the cluster number density via data collapse. A mean-field approximation of the model, from which some general trends can be determined, is presented too. Finally, since this lattice model has been recently considered as a thermodynamic counterpart of the Axelrod model of social dynamics, we discuss our results in connection with this one.Comment: 12 pages, 6 figures. Results corrected for the case F=3, q=2, and discussion extended in Sec. IV and V. Published versio

    Wikipedia editing dynamics

    Get PDF
    A model for the probabilistic function followed in Wikipedia edition is presented and compared with simulations and real data. It is argued that the probability to edit is proportional to the editor's number of previous editions (preferential attachment), to the editor's fitness and to an ageing factor. Using these simple ingredients, it is possible to reproduce the results obtained for Wikipedia edition dynamics for a collection of single pages as well as the averaged results. Using a stochastic process framework, a recursive equation was obtained for the average of the number of editions per editor that seems to describe the editing behaviour in Wikipedia.Comment: 15 pages, 6 figure

    The dynamic nature of conflict in Wikipedia

    No full text
    The voluntary process of Wikipedia edition provides an environment where the outcome is clearly a collective product of interactions involving a large number of people. We propose a simple agent-based model, developed from real data, to reproduce the collaborative process of Wikipedia edition. With a small number of simple ingredients, our model mimics several interesting features of real human behaviour, namely in the context of edit wars. We show that the level of conflict is determined by a tolerance parameter, which measures the editors' capability to accept different opinions and to change their own opinion. We propose to measure conflict with a parameter based on mutual reverts, which increases only in contentious situations. Using this parameter, we find a distribution for the inter-peace periods that is heavy-tailed. The effects of wiki-robots in the conflict levels and in the edition patterns are also studied. Our findings are compared with previous parameters used to measure conflicts in edit wars.Comment: 12 pages, 7 figure

    Stationarity of the inter-event power-law distributions

    No full text
    A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia's editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our results suggest that there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance of starting an activity, there is a robust distribution of new related actions, which does not depend on the time of day at which the activity started

    Stationarity of the inter-event power-law distributions

    Get PDF
    A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of these processes generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia's editing records to unravel some features of this phenomenon. We show that even though the probability to start editing is conditioned by the circadian 24 hour cycle, the conditional probability for the time interval between successive edits at a given time of the day is independent from the latter. We confirm our findings with the activity of posting on the social network Twitter. Our results suggest that there is an intrinsic humankind scheduling pattern: after overcoming the encumbrance of starting an activity, there is a robust distribution of new related actions, which does not depend on the time of day at which the activity started
    corecore