47,209 research outputs found

    NeIII/OII as an oxygen abundance indicator in the HII regions and HII galaxies

    Full text link
    To calibrate the relationship between Ne3O2 (Ne3O2 = log(\neiiiλ3869\lambda3869/\oiiλ3727\lambda3727)) and oxygen abundances, we present a sample of \sim3000 \hii galaxies from the Sloan Digital Sky Survey (SDSS) data release four. They are associated with a sample from the literature intended to enlarge the oxygen abundance region. We calculated the electron temperatures (TeT_e) of 210 galaxies in the SDSS sample with the direct method, and TeT_e of the other 2960 galaxies in SDSS sample calculated with an empirical method. Then, we use a linear least-square fitting to calibrate the Ne3O2 oxygen abundance indicator. It is found that the Ne3O2 estimator follows a linear relation with \zoh\ that holds for the whole abundance range covered by the sample, from approximately 7.0 to 9.0. The best linear relationship between the Ne3O2 and the oxygen abundance is calibrated. The dispersion between oxygen abundance and Ne3O2 index in the metal rich galaxies may come partly from the moderate depletion of oxygen onto grains. The Ne3O2Ne3O2 method has the virtue of being single-valued and not affected by internal reddening. As a result, the Ne3O2Ne3O2 method can be a good metallicity indicator in the \hii regions and \hii galaxies, especially in high-redshift galaxies.Comment: 7 pages, 6 figures. A&A accepte

    Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study

    Get PDF
    Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity

    Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    Get PDF
    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem

    Entropy and its state of arts on research of spatial data uncertainty

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    SU(4) Theory for Spin Systems with Orbital Degeneracy

    Full text link
    The isotropic limit of spin systems with orbital degeneracy is shown to have global SU(4) symmetry. On many 2D lattices, the ground state does not posses long range order, which may explain the observed spin liquid properties of LiNiO2LiNiO_2. In the SU(4) Neel ordered state, spin-spin correlations can be antiferromagneitc between two neighboring sites with parallel magnetic moments.Comment: 11 pages, 2 figures. submitted to PR

    Arbitrage opportunities and feedback trading in emissions and energy markets

    Get PDF
    This paper extends Sentana and Wadhwani (SW 1992) model to study the presence of feedback trading in emissions and energy markets and the extent to which such behaviour is linked to the level of arbitrage opportunities. Applying our augmented models to the carbon emission and major energy markets in Europe, we find evidence of feedback trading in coal and electricity markets, but not in carbon market where the institutional investors dominate. This finding is consistent with the notion that institutional investors are less susceptible to pursuing feedback-style investment strategies. In further analysis, our results show that the intensity of feedback trading is significantly related to the level of arbitrage opportunities, and that the significance of such relationship depends on the market regimes
    corecore