416 research outputs found

    Short hybrid polymer/sol-gel silica waveguide switches with high in-device electro-optic coefficient based on photostable chromophore

    Get PDF
    The highest electro-optic (EO) coefficient to date is achieved in short polymeric directional coupler switches based on hybrid EO polymer/sol-gel silica waveguides. Optimized poling conditions in such waveguides give a highest in-device EO coefficient of 160 pm/V at 1550 nm using highly efficient and photostable guest–host EO polymer SEO100. Adiabatic waveguide transitions from the passive sol-gel core to active EO polymer cores surrounding the sol-gel core are shown using EO polymer cores with a coplanar tapered structure. Switching voltages of 8.4 and 10.5 V are achieved for electrodes that are 2.1 and 1.5 mm long, respectively, which are half those of EO switches containing the chromophore AJLS102

    Mechanisms of Acido-Tolerance and Characteristics of Photosystems in an Acidophilic and Thermophilic Red Alga, Cyanidium Caldarium

    Get PDF
    In this chapter, we describe the mechanisms of acido-tolerance in an acidophilic- and thermophilic red alga, Cyanidium caldarium. In spite of the extremely acidic environments it inhabits, the intracellular pH of Cyanidium cells is kept neutral by pumping out the protons previously leaked into the cells according to the steep pH gradient. The H+ pump is driven by the plasma membrane ATPase, utilizing intracellular ATP produced by both oxidative phosphorylation and cyclic photophosphorylation via photosystem I. We also describe the characteristics and function of the two photosystems, Photosystem I (PSI) and II (PSII), in Cyanidium caldarium in comparison with those of cyanobacteria, other eukaryotic algae, and higher plants, based on the crystal structures of the two complexes reported so far

    Anion-Catalyzed Dissolution of NO_2 on Aqueous Microdroplets

    Get PDF
    Fifty-seven years after NOx (NO + NO_2) were identified as essential components of photochemical smog, atmospheric chemical models fail to correctly predict •OH/HO_2• concentrations under NO_x-rich conditions. This deficiency is due, in part, to the uncertain rates and mechanism for the reactive dissolution of NO_2(g) (2NO_2 + H_2O = NO_3^− + H^+ + HONO) in fog and aerosol droplets. Thus, state-of-the-art models parametrize the uptake of NO_2 by atmospheric aerosol from data obtained on “deactivated tunnel wall residue”. Here, we report experiments in which NO_3^− production on the surface of microdroplets exposed to NO_2(g) for 1 ms is monitored by online thermospray mass spectrometry. NO_2 does not dissolve in deionized water (NO_3^− signals below the detection limit) but readily produces NO_3^− on aqueous NaX (X = Cl, Br, I) microdroplets with NO_2 uptake coefficients γ that vary nonmonotonically with electrolyte concentration and peak at γ_(max) ~ 10^(−4) for [NaX] ~ 1 mM, which is >10^3 larger than that in neat water. Since I^− is partially oxidized to I_2•^− in this process, anions seem to capture NO2(g) into X−NO_2•^− radical anions for further reaction at the air/water interface. By showing that γ is strongly enhanced by electrolytes, these results resolve outstanding discrepancies between previous measurements in neat water versus NaCl-seeded clouds. They also provide a general mechanism for the heterogeneous conversion of NO_2(g) to (NO_3^− + HONO) on the surface of aqueous media

    Copper effect on the protein composition of photosystem II

    Get PDF
    The definitive version is available at: http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the Dirección General de Investigación Científica y Técnica (Grant PB98-1632).Peer reviewe

    Conversion of Iodide to Hypoiodous Acid and Iodine in Aqueous Microdroplets Exposed to Ozone

    Get PDF
    Halides are incorporated into aerosol sea spray, where they start the catalytic destruction of ozone (O3) over the oceans and affect the global troposphere. Two intriguing environmental problems undergoing continuous research are (1) to understand how reactive gas phase molecular halogens are directly produced from inorganic halides exposed to O3 and (2) to constrain the environmental factors that control this interfacial process. This paper presents a laboratory study of the reaction of O3 at variable iodide (I–) concentration (0.010–100 μM) for solutions aerosolized at 25 °C, which reveal remarkable differences in the reaction intermediates and products expected in sea spray for low tropospheric [O3]. The ultrafast oxidation of I– by O3 at the air–water interface of microdroplets is evidenced by the appearance of hypoiodous acid (HIO), iodite (IO2–), iodate (IO3–), triiodide (I3–), and molecular iodine (I2). Mass spectrometry measurements reveal an enhancement (up to 28%) in the dissolution of gaseous O3 at the gas–liquid interface when increasing the concentration of NaI or NaBr from 0.010 to 100 μM. The production of iodine species such as HIO and I2 from NaI aerosolized solutions exposed to 50 ppbv O3 can occur at the air–water interface of sea spray, followed by their transfer to the gas-phase, where they contribute to the loss of tropospheric ozone
    corecore