5,493 research outputs found

    The time-history of a satellite around an oblate planet

    Get PDF
    Time history of satellite around oblate plane

    Satellite motion for all inclinations around an oblate planet

    Get PDF
    Satellite motion for all inclinations around oblate plane

    Phase separation in the particle-hole asymmetric Hubbard model

    Full text link
    The paramagnetic phase diagram of the Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping on the Bethe lattice is computed at half-filling and in the weakly doped regime using the self-energy functional approach for dynamical mean-field theory. NNN hopping breaks the particle-hole symmetry and leads to a strong asymmetry of the electron-doped and hole-doped regimes. Phase separation occurs at and near half-filling, and the critical temperature of the Mott transition is strongly suppressed.Comment: 8 pages, 8 figure

    Relaxation dynamics of the Kondo lattice model

    Get PDF
    We study the relaxation properties of the Kondo lattice model using the nonequilibrium dynamical mean field formalism in combination with the non-crossing approximation. The system is driven out of equilibrium either by a magnetic field pulse which perturbs the local singlets, or by a sudden quench of the Kondo coupling. For relaxation processes close to thermal equilibrium (after a weak perturbation), the relaxation time increases substantially as one crosses from the local moment regime into the heavy Fermi liquid. A strong perturbation, which injects a large amount of energy, can rapidly transform the heavy Fermi liquid into a local moment state. Upon cooling, the heavy Fermi liquid reappears in a two-stage relaxation, where the first step opens the Kondo gap and the second step corresponds to a slow approach of the equilibrium state via a nonthermal pathway

    Design approaches in technology enhanced learning

    Get PDF
    Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists

    Internal Anisotropy of Collision Cascades

    Full text link
    We investigate the internal anisotropy of collision cascades arising from the branching structure. We show that the global fractal dimension cannot give an adequate description of the geometrical structure of cascades because it is insensitive to the internal anisotropy. In order to give a more elaborate description we introduce an angular correlation function, which takes into account the direction of the local growth of the branches of the cascades. It is demonstrated that the angular correlation function gives a quantitative description of the directionality and the interrelation of branches. The power law decay of the angular correlation is evidenced and characterized by an exponent and an angular correlation length different from the radius of gyration. It is demonstrated that the overlapping of subcascades has a strong effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include

    Anomalous superconducting state gap size versus Tc behavior in underdoped Bi_2Sr_2Ca_1-xDy_xCu_2O_8+d

    Full text link
    We report angle-resolved photoemission spectroscopy measurements of the excitation gap in underdoped superconducting thin films of Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+d}. As Tc is reduced by a factor of 2 by underdoping, the superconducting state gap \Delta does not fall proportionally, but instead stays constant or increases slightly, in violation of the BCS mean-field theory result. The different doping dependences of \Delta and kT_c indicate that they represent different energy scales. The measurements also show that \Delta is highly anisotropic and consistent with a d_{x^2-y^2} order parameter, as in previous studies of samples with higher dopings. However, in these underdoped samples, the anisotropic gap persists well above T_c. The existence of a normal state gap is related to the failure of \Delta to scale with T_c in theoretical models that predict pairing without phase coherence above T_c.Comment: 10 pages, 4 postscript figures, revtex forma

    Systematic Control of Carrier Doping without Disorder at Interface of Oxide Heterostructures

    Full text link
    We propose a method to systematically control carrier densities at the interface of transition-metal oxide heterostructures without introducing disorders. By inserting non-polar layers sandwiched by polar layers, continuous carrier doping into the interface can be realized. This method enables us to control the total carrier densities per unit cell systematically up to high values of the order unity.Comment: 8 pages, 9 figure

    Quantum Critical Point, Scaling, and Universality in High Tc [CaxLa(1-x)][Ba(2-c-x)La(c+x)]Cu3Oy

    Full text link
    Using charge transport observations on sintered ceramic samples of CLBLCO, we failed to observe the Quantum Critical Point (QCP) where it is expected. Experimental data relating Cooper pair density, electrical conductivity, and superconductivity critical temperature suggest that Homes' relation might need a more specific definition of 'sigma'. Transport observations on YBCO single crystals will resolve this question.Comment: 5 pages, 3 figure
    • …
    corecore