309 research outputs found

    Intravascular tissue reactions induced by various types of bioabsorbable polymeric materials: correlation between the degradation profiles and corresponding tissue reactions

    Get PDF
    Several different bioabsorbable polymeric coil materials are currently used with the goal of improving treatment outcomes of endovascular embolization of intracranial aneurysms. However, little is known about the correlation between polymer degradation profiles and concomitant tissue responses in a blood vessel. The authors describe in vitro degradation characteristics of nine different polymeric materials and their corresponding tissue responses induced in rabbit carotid arteries. Mass loss and molecular weight loss of nine commercially available bioabsorbable sutures were evaluated in vitro up to16 weeks. The same nine materials, as well as platinum coils, were implanted into blind-end carotid arteries (n = 44) in rabbits, and their tissue reactions were evaluated histologically 14 days after the implantation. Five of the nine polymers elicited moderate to strong tissue reactions relative to the remaining materials. While polymer mass loss did not correlate with their histologic findings, polymers that showed a faster rate of molecular weight loss had a tendency to present more active tissue reactions such as strong fibrocellular response around the implanted material with a moderate inflammatory cell infiltration. Maxon exhibited the fastest rate of molecular weight loss and poly-l-lactic acid the slowest. The rate of molecular weight loss may be an important factor that is associated with the degree of bioactivity when bioabsorbable polymers are implanted into blood vessels. For further quantitative analysis, additional experiments utilizing established aneurysm models need to be conducted

    Serum aspirin esterase is strongly associated with glucose and lipids in healthy subjects: different association patterns in subjects with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aspirin esterase (AE) activity can account for part of aspirin pharmacokinetics in the circulation, possibly being associated with the impairment of aspirin effectiveness as an inhibitor of platelet aggregation.</p> <p>Aims</p> <p>The study was aimed at investigating the correlations of serum AE activity with cholinesterase (ChE) and metabolic variables in healthy subjects in comparison to subjects with type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>In cardiovascular disease-free T2DM subjects and healthy controls, the AE activity levels and/or the correlation patterns between AE and the other variables were analyzed.</p> <p>Results</p> <p>Neither AE nor ChE activities were higher in the subjects with T2DM. Serum AE activity strongly correlated with ChE as well as glucose/lipids variables such as total cholesterol and triglyceride in healthy subjects, while the correlations between AE and glucose/lipids variables were not present in T2DM subjects.</p> <p>Conclusions</p> <p>These data may reflect the pathophysiological changes between healthy and T2DM subjects. Our data may thus provide the basis for future studies to unravel the mechanisms.</p

    External rotation during elevation of the arm

    Get PDF
    Background Knowledge about the pattern of rotation during arm elevation is necessary for a full understanding of shoulder function, and it is also useful for planning of rehabilitation protocols to restore range of motion in shoulders in disorder. However, there are insufficient in vivo data available

    Freely Suspended Cellular “Backpacks” Lead to Cell Aggregate Self-Assembly

    Get PDF
    Cellular “backpacks” are a new type of anisotropic, nanoscale thickness microparticle that may be attached to the surface of living cells creating a “bio-hybrid” material. Previous work has shown that these backpacks do not impair cell viability or native functions such as migration in a B and T cell line, respectively. In the current work, we show that backpacks, when added to a cell suspension, assemble cells into aggregates of reproducible size. We investigate the efficiency of backpack−cell binding using flow cytometry and laser diffraction, examine the influence of backpack diameter on aggregate size, and show that even when cell−backpack complexes are forced through small pores, backpacks are not removed from the surfaces of cells.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-08-19762)National Science Foundation (U.S.) (Graduate Research Fellowship)United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchHoward Hughes Medical Institute (Investigator)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship 32 CFR 168a

    Radiative cooling of carbon cluster anions C2n+1− (n = 3–5)

    Get PDF
    Radiative cooling of carbon cluster anions C2n+1− (n = 3–5) is investigated using the cryogenic electrostatic ion storage ring DESIREE. Two different strategies are applied to infer infrared emission on slow (milliseconds to seconds) and ultraslow (seconds to minutes) timescales. Initial cooling of the ions over the millisecond timescale is probed indirectly by monitoring the decay in the yield of spontaneous neutralization by thermionic emission. The observed cooling rates are consistent with a statistical model of thermionic electron emission in competition with infrared photon emission due to vibrational de-excitation. Slower cooling over the seconds to minutes timescale associated with infrared emission from low-frequency vibrational modes is probed using time-dependent action spectroscopy. For C9− and C11−, cooling is evidenced by the time-evolution of the yield of photo-induced neutralization following resonant excitation of electronic transitions near the detachment threshold. The cross-section for resonant photo-excitation is at least two orders of magnitude greater than for direct photodetachment. In contrast, C7− lacks electronic transitions near the detachment threshold
    corecore