314 research outputs found

    Interchain-Frustration-Induced Metallic State in Quasi-One-Dimensional Mott Insulators

    Full text link
    The mechanism that drives a metal-insulator transition in an undoped quasi-one-dimensional Mott insulator is examined in the framework of the Hubbard model with two different hoppings t_{perp 1} and t_{perp 2} between nearest-neighbor chains. By applying an N_{perp}-chain renormalization group method at the two-loop level, we show how a metallic state emerges when both t_{perp 1} and t_{perp 2} exceed critical values. In the metallic phase, the quasiparticle weight becomes finite and develops a strong momentum dependence. We discuss the temperature dependence of the resistivity and the impact of our theory in the understanding of recent experiments on half-filled molecular conductors.Comment: 4 pages, 3 figures, published versio

    Mechanism of confinement in low-dimensional organic conductors

    Full text link
    Confinement-deconfinement transition in quarter-filled two-coupled chains comprising dimerization, repulsive interactions and interchain hopping has been demonstrated by applying the renormalization group method to the bosonized Hamiltonian. The confinement given by the irrelevant interchain hopping occurs with increasing umklapp scattering which is induced by the dimerization leading to effectively half-filling. It is shown that the transition originates in a competition between a charge gap and the renormalized interchain hopping.Comment: 5 pages, 7 figures, Proc. CREST Int. Workshop, Nagoya 2000, submitted to J. Phys. Chem. Solid

    Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects

    Full text link
    The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility χ(T)\chi (T) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.Comment: 21 pages, latex including 5 eps figure

    Wilson-Kadanoff Renormalization Group in Higher Orders: One-Dimensional g-ology Model as an Example

    Full text link
    We apply the standard Wilson-Kadanoff (WK) momentum-space Renormalization Group (RG) scheme for the g-ology model of one-dimensional fermions. By explicitly carrying out calculations at the two-loop level, we show how the RG flow equations can be derived from the summation of the cascades of contractions generated by the effective action's mode elimination at each infinitesimal step of the WK procedure. The rules for selecting these series of cascades appear naturally as a consequence of the WK scheme ``on-shell'' kinematic constraints and conservation laws. The relation between the present RG approach and the field-theoretic schemes used in earlier related studies is analysed. Generalizations for other models and/or higher dimensions are formulated.Comment: 21 pages, 5 figure

    Pressure-induced Spin-Peierls to Incommensurate Charge-Density-Wave Transition in the Ground State of TiOCl

    Full text link
    The ground state of the spin-Peierls system TiOCl was probed using synchrotron x-ray diffraction on a single-crystal sample at T = 6 K. We tracked the evolution of the structural superlattice peaks associated with the dimerized ground state as a function of pressure. The dimerization along the b axis is rapidly suppressed in the vicinity of a first-order structural phase transition at Pc = 13.1(1) GPa. The high-pressure phase is characterized by an incommensurate charge density wave perpendicular to the original spin chain direction. These results show that the electronic ground state undergoes a fundamental change in symmetry, indicating a significant change in the principal interactions.Comment: 5 pages, 4 figure

    Superconductivity and Antiferromagnetism in Quasi-one-dimensional Organic Conductors

    Get PDF
    We review the current understanding of superconductivity in the quasi-one-dimensional organic conductors of the Bechgaard and Fabre salt families. We discuss the interplay between superconductivity, antiferromagnetism, and charge-density-wave fluctuations. The connection to recent experimental observations supporting unconventional pairing and the possibility of a triplet-spin order parameter for the superconducting phase is also presented.Comment: (v1) 30 pages, 13 figures; Review article for the 20th anniversary of high-Tc superconductivity, to appear in J. Low Temp. Phys. (v2) 1 Ref. adde

    (Sr/Ca)_{14}Cu_{24}O_{41} spin ladders studied by NMR under pressure

    Full text link
    (63)Cu-NMR measurements have been performed on two-leg hole-doped spin ladders Sr_{14-x}Ca_{x}Cu_{24}O_{41} single crystals (0-x-12) at several pressures up to the pressure domain where the stabilization of a superconducting ground state can be achieved. The data reveal marked decrease of the spin gap derived from Knight shift measurements upon Ca substitution and also under pressure and confirm the onset of low lying spin excitations around P_{c} as previously reported. The spin gap in Sr_{2}Ca_{12}Cu_{24}O_{41} is strongly reduced above 20 kbar. However, the data of an experiment performed at P=36 kbar where superconductivity has been detected at 6.7K by an inductive technique have shown that a significant amount of spin excitations remains gapped at 80K when superconductivity sets in. The standard relaxation model with two and three-magnon modes explains fairly well the activated relaxation data in the intermediate temperature regime corresponding to gapped spin excitations using the spin gap data derived from Knight shift experiments.The data of Gaussian relaxation rates of heavily doped samples support the limitation of the coherence lenght at low temperature by the average distance between doped holes. We discuss the interplay between superconductivity and the spin gap and suggest that these new results support the exciting prospect of superconductivity induced by the interladder tunnelling of preformed pairs as long as the pressure remains lower than the pressure corresponding to the maximum of the superconducting critical temperature.Comment: 15 pages Latex, 13 figures. to be published in Eur.Phys.Jour.B,200

    Heterologous expression of peptide hormone precursors in the yeast Saccharomyces cerevisiae. Evidence for a novel prohormone endoprotease with specificity for monobasic amino acids.

    Get PDF
    The peptide somatostatin (SRIF) exists as two different molecular species. In addition to the most common form, which is a 14-residue peptide, there is also a 14-amino acid amino-terminally extended form of the tetradecapeptide, SRIF-28. Both peptides are synthesized as larger precursors containing paired basic and monobasic amino acids at their processing sites, which, upon cleavage, generate either SRIF-14 or -28, respectively. In mammals a single prepro-SRIF molecule undergoes tissue-specific processing to generate the mature hormone whereas in some species of fish separate genes encode two distinct but homologous precursors prepro-SRIF-I and -II that give rise to SRIF-14 and -28, respectively. To investigate the molecular basis for differential processing of the prohormones we introduce their cDNAs into yeast cells (Saccharomyces cerevisiae). The signal peptides of both precursors were poorly recognized by the yeast endoplasmic reticulum translocation apparatus, consequently only low levels of SRIF peptides were synthesized. To circumvent this problem a chimeric precursor consisting of the alpha-factor signal peptide plus 30 residues of the proregion was fused to pro-SRIF-II. This fusion protein was efficiently transported through the yeast secretory pathway and processed to SRIF-28 exclusively, which is identical to the processing of the native precursor in pancreatic islet D-cells. Most significantly, cleavage of the precursor to SRIF-28 was independent of the Kex 2 endoprotease since processing occurred efficiently in a kex 2 mutant strain. We conclude that in addition to the Kex 2 protease, yeast possess a distinct prohormone converting enzyme with specificity toward monobasic processing sites

    Confinement-deconfinement transition in two-coupled chains with umklapp scattering

    Full text link
    A role of umklapp scattering has been examined for two-coupled chains with both forward and backward scatterings by applying renormalization group method to bosonized Hamiltonian. It has been found that a state with relevant interchain hopping changes into a state with irrelevant (confined) one when the magnitude of umklapp scattering becomes larger than that of interchain hopping. Critical value of umklapp scattering for such a confinement-deconfinement transition is calculated as the function of interchain hopping and intrachain interactions. A crossover from one-dimensional regime into that of coupled chains is also shown with decreasing temperature.Comment: 13 pages, 7 figures, to be published in Phys. Rev.

    Spin-Density-Wave Phase Transitions in Quasi-One-Dimensional Dimerized Quarter-Filled Organic Conductors

    Full text link
    We have studied spin density wave (SDW) phase transitions in dimerized quarter-filled Hubbard chains weakly coupled via interchain one-particle hopping, tb0t_{b0}. It is shown that there exists a critical value of tb0t_{b0}, tbt_{b}^\ast, between the incoherent metal regime (tb0<tbt_{b0}<t_{b}^\ast) and the Fermi liquid regime (tb0>tbt_{b0}>t_{b}^\ast) in the metallic phase above the SDW transition temperature. By using the 2-loop perturbative renormalization-group approach together with the random-phase-approximation, we propose a SDW phase diagram covering both of the regimes. The SDW phase transition from the incoherent metal phase for tb0<tbt_{b0}<t_{b}^\ast is caused by growth of the intrachain electron-electron umklapp scattering toward low temperatures, which is regarded as preformation of the Mott gap. We discuss relevance of the present result to the SDW phase transitions in the quasi-one-dimensional dimerized quarter-filled organic conductors, (TMTTF)2_2X and (TMTSF)2_2X.Comment: 19 pages, 13 eps figures, uses jpsj.sty, corrected typo in the text and figures, no changes to the paper, to appear in J. Phys. Soc. Jpn. 68, No.8 (1999
    corecore