2,426 research outputs found
Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests
The percentage of above-canopy Photosynthetic Photon Flux Density (%PPFD) was measured at 0, 50 and 100 cm above the forest floor and above the main understory vegetation in stands of (1) pure Betula papyrifera (White birch), (2) pure Populus tremuloides (Trembling aspen), (3) mixed broad-leaf-conifer, (4) shade-tolerant conifer and (5) pure Pinus banksiana (Jack pine) occurring on both clay and till soil types. %PPFD was measured instantaneously under overcast sky conditions (nine locations within each of 29 stands) and continuously for a full day under clear sky conditions (five locations within each of eight stands). The percentage cover of the understory layer was estimated at the same locations as light measurements. Mean %PPFD varied from 2% at the forest floor under Populus forests to 15% above the understory vegetation cover under Betula forests. Percent PPFD above the understory vegetation cover was significantly higher under shade intolerant tree species such as Populus, Betula and Pinus than under shade tolerant conifers. No significant differences were found in %PPFD above the understory vegetation cover under similar tree species between clay and till soil types. The coefficient of variation in %PPFD measured in the nine locations within each stand was significantly lower under deciduous dominated forests (mean of 19%) than under coniferous dominated forests (mean of 40%). %PPFD measured at the forest floor was positively correlated with %PPFD measured above the understory vegetation and negatively correlated with cumulative total percent cover of the understory vegetation (R2 = 0.852). The proportion of sunflecks above 250 and 500 ĂÂŒmol m-2 s-1 was much lower and %PPFD in shade much higher under Populus and Betula forests than under the other forests. Differences in the mean, variability and nature of the light environment found among forest and soil types are discussed in relation to their possible influences on tree succession
Notes on two-parameter quantum groups, (II)
This paper is the sequel to [HP1] to study the deformed structures and
representations of two-parameter quantum groups
associated to the finite dimensional simple Lie algebras \mg. An equivalence
of the braided tensor categories \O^{r,s} and \O^{q} is explicitly
established.Comment: 21 page
Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies
Synchronous production of large seed crops, or mast years (MYs), is a common feature of many Fagus species, which is closely linked to the dynamics of forest ecosystems, including regeneration of canopy trees and changes in animal population densities. To better understand its climatic controls and check for the presence of long-term temporal trends in MY frequencies, we reconstructed MY record of the European beech (Fagus sylvatica L.) for the southern Swedish province of Halland over 1753-2006. We used superimposed epoch analysis (SEA) to relate MY (a) to summer temperature fields over the European subcontinent and (b) to the patterns of 500 mb geopotential heights over the 35-75 degrees N. For the MY reconstruction, we used newly developed regional beech ring-width chronology (1753-2006), an available summer temperature reconstruction, and a discontinuous historical MY record. A Monte Carlo experiment allowed identification of the thresholds in both growth and summer temperature anomalies, indicative of historical MYs, which were verified by dividing data into temporally independent calibration and verification sub-periods.MYs were strongly associated with both the 500 mb height anomalies and average summer temperatures during two years preceding a MY: a mast year (t) followed a cold summer two years (t-2) prior to the mast year and a warm summer one year prior (t-1) to the mast year. During t-2 years, the geographical pattern of 500 mb height anomalies exhibited a strong height depression in the region centered in the Northern Sea and extending toward eastern North America and statistically significant (p<0.05) temperature anomalies covering predominantly southern Scandinavia (area below 60 N) and British Isles. A year immediately preceding a mast year (t-1) was characterized by a strong regional high pressure anomaly centered in southern Scandinavia with significant temperature anomalies extended mostly over southern Scandinavia and Germany.The long-term mean MY return interval was 6.3 years, with 50 and 90% probabilities of MY occurrence corresponding to 6 and 15 years, respectively. Periods with intervals significantly shorter than the long-term mean were observed around 1820-1860 and 1990-2006 (means 3.9 and 3.2 years, respectively). However, the difference in return intervals between two sub-periods themselves was not significant.Geographically large and temporally rapid changes in atmospheric circulation among years, responsible for summer temperature conditions in the Northern Europe, are likely primary environmental drivers of masting phenomenon. However, decadal and centurial variability in MY intervals is difficult to relate directly to temperature variability, suggesting the presence of conditions "canceling" would-be MYs. Long-term MY reconstruction demonstrates high variability of reproductive behavior in European beech and indicates that a period with shorter MY intervals at the end of 20th may be not unique in a multi-century perspective
Combinatorial Hopf algebras and Towers of Algebras
Bergeron and Li have introduced a set of axioms which guarantee that the
Grothendieck groups of a tower of algebras can be
endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap,
and independently Lam and Shimozono constructed dual graded graphs from
primitive elements in Hopf algebras. In this paper we apply the composition of
these constructions to towers of algebras. We show that if a tower
gives rise to graded dual Hopf algebras then we must
have where .Comment: 7 page
Mid-infrared and optical spectroscopy of ultraluminous infrared galaxies: A comparison
New tools from Infrared Space Observatory (ISO) mid-infrared spectroscopy
have recently become available to determine the power sources of dust-obscured
ultraluminous infrared galaxies (ULIRGs). We compare ISO classifications -
starburst or active galactic nucleus (AGN) - with classifications from optical
spectroscopy, and with optical/near-infrared searches for hidden broad-line
regions. The agreement between mid-infrared and optical classification is
excellent if optical LINER spectra are assigned to the starburst group. The
starburst nature of ULIRG LINERs strongly supports the suggestion that LINER
spectra in infrared-selected galaxies, rather than being an expression of the
AGN phenomenon, are due to shocks that are probably related to galactic
superwinds. Differences between ISO and optical classification provide clues on
the evolution of ULIRGs and on the configuration of obscuring dust. We find few
ISO AGN with optical HII or LINER identification, suggesting that highly
obscured AGN exist but are not typical for the ULIRG phenomenon in general.
Rather, our results indicate that strong AGN activity, once triggered, quickly
breaks the obscuring screen at least in certain directions, thus becoming
detectable over a wide wavelength range.Comment: aastex, 1 eps figure. Accepted by ApJ (Letters
Mid-Infrared Selected Quasars I: Virial Black Hole Mass and Eddington Ratios
We provide a catalog of 391 mid-infrared-selected (MIR, 24m)
broad-emission-line (BEL, type 1) quasars in the 22 deg SWIRE Lockman Hole
field. This quasar sample is selected in the MIR from Spitzer MIPS with Jy, jointly with an optical magnitude limit of r (AB) 22.5 for
broad line identification. The catalog is based on MMT and SDSS spectroscopy to
select BEL quasars, extends the SDSS coverage to fainter magnitudes and lower
redshifts, and recovers a more complete quasar population. The MIR-selected
quasar sample peaks at 1.4, and recovers a significant and constant
(20\%) fraction of extended objects with SDSS photometry across magnitudes,
which was not included in the SDSS quasar survey dominated by point sources.
This sample also recovers a significant population of . We then investigate the continuum luminosity and line profiles of these
MIR quasars, and estimate their virial black hole masses and the Eddington
ratios. The SMBH mass shows evidence of downsizing, though the Eddington ratios
remain constant at . Compared to point sources in the same redshift
range, extended sources at show systematically lower Eddington ratios.
The catalog and spectra are publicly available online.Comment: 72 pages, 27 figures, 16 tables; ApJ accepte
Forest productivity decline caused by successional paludification of boreal soils
Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate of paludification. At the landscape scale, the fire regime (frequency and severity) controls paludification and forest productivity through its effect on soil organic layers. Implications for global carbon budgets and sustainable forestry are discussed
Parking functions, labeled trees and DCJ sorting scenarios
In genome rearrangement theory, one of the elusive questions raised in recent
years is the enumeration of rearrangement scenarios between two genomes. This
problem is related to the uniform generation of rearrangement scenarios, and
the derivation of tests of statistical significance of the properties of these
scenarios. Here we give an exact formula for the number of double-cut-and-join
(DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective
bijections between the set of scenarios that sort a cycle and well studied
combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure
Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories
This paper examines the nature of classical correspondence in the case of
coherent states at the level of quantum trajectories. We first show that for a
harmonic oscillator, the coherent state complex quantum trajectories and the
complex classical trajectories are identical to each other. This congruence in
the complex plane, not restricted to high quantum numbers alone, illustrates
that the harmonic oscillator in a coherent state executes classical motion. The
quantum trajectories are those conceived in a modified de Broglie-Bohm scheme
and we note that identical classical and quantum trajectories for coherent
states are obtained only in the present approach. The study is extended to
Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle
in an infinite potential well and that in a symmetric Poschl-Teller (PT)
potential by solving for the trajectories numerically. For the coherent state
of the infinite potential well, almost identical classical and quantum
trajectories are obtained whereas for the PT potential, though classical
trajectories are not regained, a periodic motion results as t --> \infty.Comment: More example
Testing forest ecosystem management in boreal mixedwoods of northwestern Quebec: initial response of aspen stands to different levels of harvesting
The SAFE (sylviculture et am
- âŠ