24,329 research outputs found

    Study of acoustic emission during mechanical tests of large flight weight tank structure

    Get PDF
    A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws

    Anomalous time correlation in two-dimensional driven diffusive systems

    Full text link
    We study the time correlation function of a density field in two-dimensional driven diffusive systems within the framework of fluctuating hydrodynamics. It is found that the time correlation exhibits power-law behavior in an intermediate time regime in the case that the fluctuation-dissipation relation is violated and that the power-law exponent depends on the extent of this violation. We obtain this result by employing a renormalization group method to treat a logarithmic divergence in time.Comment: 6 page

    Specific heat of the S=1S = 1 spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 in high magnetic fields

    Full text link
    We have measured the specific heat of the coupled spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 to 50 mK in temperature and to 29 T in the magnetic field. The experiment extends to the midpoint of the field region (25.9 T ≤H≤\leq H \leq 32.3 T) of the magnetization plateau at 1/2 of the saturation magnetization, and reveals the presence of three ordered phases in the field region between that of the magnetization plateau and the low-field spin-liquid region. The exponent of the phase boundary with the thermally disordered region is smaller than the theoretical value based on the Bose-Einstein condensation of spin triplets. At zero field and 29 T, the specific-heat data show gapped behaviors characteristic of spin liquids. The zero-field data indicate that the gapped triplet excitations form two levels whose energies differ by nearly a factor of two. At least the lower level is well localized. The data at 29 T reveal that the low-lying excitations at the magnetization plateau are weakly delocalized.Comment: 6 pages, 5 figures, revised versio

    Field Measurements of Penetrator Seismic Coupling in Sediments and Volcanic Rocks

    Get PDF
    Field experiments were conducted to determine how well a seismometer installed using a penetrator would be coupled to the ground. A dry-lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were at various distances to generate seismic signals. These signals were detected by the penetrator-mounted geophone assembly and by a reference geophone assembly buried or anchored to surface rock and 1-m from the penetrator. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence, and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology

    Adiabatic quantum computation along quasienergies

    Full text link
    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy is recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [Tanaka and Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different, i.e., power or exponential, running time steps are shown to be qualitatively different. Curiously, in establishing the equivalence between the standard quantum computation based on the circuit model and the anholonomic adiabatic quantum computation model, it is shown that the cost for |v> to enlarge the gaps of the eigenvalue is qualitatively negligible.Comment: 11 pages, 2 figure

    Anomalous phase of MnP at very low field

    Full text link
    Manganese phosphide MnP has been investigated for decades because of its rich magnetic phase diagram. It is well known that the MnP exhibits the ferromagnetic phase transition at \Tc=292 K and the helical magnetic phase below \TN=47 K at zero field. Recently, a novel magnetic phase transition was observed at T∗=282T^* = 282 K when the magnetic field is lower than 5 Oe. However, the nature of the new phase has not been illuminated yet. In order to reveal it, we performed the AC and the DC magnetization measurements for a single crystal MnP at very low field. A divergent behavior of the real and the imaginary part of the AC susceptibility and a sharp increase of the DC magnetization was observed at T∗T^*, indicating the magnetic phase transition at T∗T^*. Furthermore a peculiar temperature hysteresis was observed: namely, the magnetization depends on whether cooling sample to the temperature lower than \TN or not before the measurements. This hysteresis phenomenon suggests the complicated nature of the new phase and a strong relation between the magnetic state of the new phase and the helical structure.Comment: 4 pages, 2 figure

    A possible nature of breathing plasmas

    Get PDF
    A model for "breathing" plasmas observed in the large helical device [Y. Takeiri , Plasma Phys. Controlled Fusion 42, 147 (2000)] is proposed. It takes into account the synergism of radiation losses from both low-Z (carbon, oxygen) and high-Z (iron) impurities in the plasma power balance. (C) 2000 American Institute of Physics. [S1070- 664X(00)01411-7]

    First-principles dynamical CPA to finite-temperature magnetism of transition metals

    Full text link
    We present here the first-principles dynamical CPA (coherent potential approximation) combined with the tight-binding LMTO LDA+U method towards quantitative calculations of the electronic structure and magnetism at finite temperatures in transition metals and compounds. The theory takes into account the single-site dynamical charge and spin fluctuations using the functional integral technique as well as an effective medium. Numerical results for Fe, Co, and Ni show that the theory explains quantitatively the high-temperature properties such as the effective Bohr magneton numbers and the excitation spectra in the paramagnetic state, and describes the Curie temperatures semiquantitatively.Comment: ICM'09 Proceeding
    • …
    corecore