8,934 research outputs found

    Suppression of backward scattering of Dirac fermions in iron pnictides Ba(Fe1x_{1-x}Rux_xAs)2_2

    Full text link
    We report electronic transport of Dirac cones when Fe is replaced by Ru, which has an isoelectronic electron configuration to Fe, using single crystals of Ba(Fe1x_{1-x}Rux_xAs)2_2. The electronic transport of parabolic bands is shown to be suppressed by scattering due to the crystal lattice distortion and the impurity effect of Ru, while that of the Dirac cone is not significantly reduced due to the intrinsic character of Dirac cones. It is clearly shown from magnetoresistance and Hall coefficient measurements that the inverse of average mobility, proportional to cyclotron effective mass, develops as the square root of the carrier number (n) of the Dirac cones. This is the unique character of the Dirac cone linear dispersion relationship. Scattering of Ru on the Dirac cones is discussed in terms of the estimated mean free path using experimental parameters.Comment: 6 pages, 3 figures, To be published in Phys. Rev.

    Applicative Bidirectional Programming with Lenses

    Get PDF
    A bidirectional transformation is a pair of mappings between source and view data objects, one in each direction. When the view is modified, the source is updated accordingly with respect to some laws. One way to reduce the development and maintenance effort of bidirectional transformations is to have specialized languages in which the resulting programs are bidirectional by construction---giving rise to the paradigm of bidirectional programming. In this paper, we develop a framework for applicative-style and higher-order bidirectional programming, in which we can write bidirectional transformations as unidirectional programs in standard functional languages, opening up access to the bundle of language features previously only available to conventional unidirectional languages. Our framework essentially bridges two very different approaches of bidirectional programming, namely the lens framework and Voigtlander’s semantic bidirectionalization, creating a new programming style that is able to bag benefits from both

    Relating Leptogenesis to Low Energy Flavor Violating Observables in Models with Spontaneous CP Violation

    Full text link
    In the minimal left-right symmetric model, there are only two intrinsic CP violating phases to account for all CP violation in both the quark and lepton sectors, if CP is broken spontaneously by the complex phases in the VEV's of the scalar fields. In addition, the left- and right-handed Majorana mass terms for the neutrinos are proportional to each other due to the parity in the model. This is thus a very constrained framework, making the existence of correlations among the CP violation in leptogenesis, neutrino oscillation and neutrinoless double beta decay possible. In these models, CP violation in the leptonic sector and CP violation in the quark sector are also related. We find, however, that such connection is rather weak due to the large hierarchy in the bi-doublet VEV required by a realistic quark sector.Comment: RevTeX4, 21 pages; v2: references added, version to appear in Phys. Rev.

    Comparison of gene expression patterns between porcine cumulus-oocyte complexes and naked oocytes

    Get PDF
    Abstract Several layers of cumulus cells surround the oocyte in the antral ovarian follicle throughout the follicular development until ovulation. The cumulus cells play an important supportive and regulative role in oocyte development and maturation via intercellular communications between oocytes and cumulus cells. Using the differential display reverse transcriptase polymerase chain reaction (DD-RT-PCR) and semi-quantitative RT-PCR methods, we compared the mRNA expression patterns in porcine oocytes from two sources: cumulus-oocyte complexes (COCs) and naked oocytes (NOs). After a small scale screen, 14 differentially expressed mRNAs were cloned, sequenced, and their expression patterns were verified by semi-quantitative RT-PCR. It was confirmed that four mRNAs including three genes (PELP1, Myo5b and CAST) and a new EST (Expressed Sequence Tag) are expressed preferentially in the oocytes of COCs rather than in NOs. Previous studies of the three genes suggested that they are mainly involved in oestrogen receptor regulation, membrane trafficking, organelle transport, cellular signalling and some other cellular processes. These results suggest that the aberrant of gene expression patterns detected in the oocytes of NOs compared with COCs explains their reduced quality in terms of development and maturation. In conclusion, these differentially expressed mRNAs may be involved in cellular interactions between oocytes and cumulus cells and thus could be considered as essential genes for the competence of oocytes. Keywords: Differential gene expression, DD-RT-PCR, porcine oocytes, cumulus South African Journal of Animal Science Vol. 37 (1) 2007: pp. 57-6

    Magnetism and Superconductivity in the Two-Dimensional 16 Band d-p Model for Iron-Based Superconductors

    Full text link
    The electronic states of the Fe2As2 plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model which includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the Hund's coupling J and the pair-transfer J'. Using the random phase approximation (RPA), we obtain the magnetic phase diagram including the stripe and the incommensurate order on the U'-J plane. We also solve the superconducting gap equation within the RPA and find that, for large J, the most favorable pairing symmetry is extended s-wave whose order parameter changes its sign between the hole pockets and the electron pockets, while it is dxy-wave for small J.Comment: 4 pages, 5 figure

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    Unusual T_c variation with hole concentration in Bi_2Sr_{2-x}La_xCuO_{6+\delta}

    Full text link
    We have investigated the TcT_c variation with the hole concentration pp in the La-doped Bi 2201 system, Bi2_2Sr2x_{2-x}Lax_xCuO6+δ_{6+\delta}. It is found that the Bi 2201 system does not follow the systematics in TcT_c and pp observed in other high-TcT_c cuprate superconductors (HTSC's). The TcT_c vs pp characteristics are quite similar to what observed in Zn-doped HTSC's. An exceptionally large residual resistivity component in the inplane resistivity indicates that strong potential scatterers of charge carriers reside in CuO2_2 planes and are responsible for the unusual TcT_c variation with pp, as in the Zn-doped systems. However, contrary to the Zn-doped HTSC's, the strong scatter in the Bi 2201 system is possibly a vacancy in the Cu site.Comment: RevTeX, 3 figures, to be published in the Physical Review
    corecore