76,945 research outputs found

    From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality

    Full text link
    By means of Dirac procedure, we re-examine Yang's quantized space-time model, its relation to Snyder's model, the de Sitter special relativity and their UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a complete Yang model at both classical and quantum level can be presented and there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge

    Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems

    Get PDF
    Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion

    Recurrent Coronal Jets Induced by Repetitively Accumulated Electric Currents

    Full text link
    Three extreme-ultraviolet (EUV) jets recurred in about one hour on 2010 September 17 in the following magnetic polarity of active region 11106. The EUV jets were observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board SDO measured the vector magnetic field, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The magnetic configuration before the jets is derived by the nonlinear force-free field (NLFFF) extrapolation. We derive that the jets are above a pair of parasitic magnetic bipoles which are continuously driven by photospheric diverging flows. The interaction drove the build up of electric currents that we indeed observed as elongated patterns at the photospheric level. For the first time, the high temporal cadence of HMI allows to follow the evolution of such small currents. In the jet region, we found that the integrated absolute current peaks repetitively in phase with the 171 A flux evolution. The current build up and its decay are both fast, about 10 minutes each, and the current maximum precedes the 171 A by also about 10 minutes. Then, HMI temporal cadence is marginally fast enough to detect such changes. The photospheric current pattern of the jets is found associated to the quasi-separatrix layers deduced from the magnetic extrapolation. From previous theoretical results, the observed diverging flows are expected to build continuously such currents. We conclude that magnetic reconnection occurs periodically, in the current layer created between the emerging bipoles and the large scale active region field. It induced the observed recurrent coronal jets and the decrease of the vertical electric current magnitude.Comment: 10 pages, 7 figures, accepted for publication in A&

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    Double-dot charge transport in Si single electron/hole transistors

    Full text link
    We studied transport through ultra-small Si quantum dot transistors fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K, the devices show single-electron or single-hole transport through the lithographically defined dot. At T<4K, current through the devices is characterized by multidot transport. From the analysis of the transport in samples with double-dot characteristics, we conclude that extra dots are formed inside the thermally grown gate oxide which surrounds the lithographically defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let

    Topological Analysis of Emerging Bipole Clusters Producing Violent Solar Events

    Get PDF
    During the rising phase of Solar Cycle 24 tremendous activity occurred on the Sun with fast and compact emergence of magnetic flux leading to bursts of flares (C to M and even X-class). We investigate the violent events occurring in the cluster of two active regions (ARs), NOAA numbers 11121 and 11123, observed in November 2010 with instruments onboard the {\it Solar Dynamics Observatory} and from Earth. Within one day the total magnetic flux increased by 70%70\% with the emergence of new groups of bipoles in AR 11123. From all the events on 11 November, we study, in particular, the ones starting at around 07:16 UT in GOES soft X-ray data and the brightenings preceding them. A magnetic-field topological analysis indicates the presence of null points, associated separatrices and quasi-separatrix layers (QSLs) where magnetic reconnection is prone to occur. The presence of null points is confirmed by a linear and a non-linear force-free magnetic-field model. Their locations and general characteristics are similar in both modelling approaches, which supports their robustness. However, in order to explain the full extension of the analysed event brightenings, which are not restricted to the photospheric traces of the null separatrices, we compute the locations of QSLs. Based on this more complete topological analysis, we propose a scenario to explain the origin of a low-energy event preceding a filament eruption, which is accompanied by a two-ribbon flare, and a consecutive confined flare in AR 11123. The results of our topology computation can also explain the locations of flare ribbons in two other events, one preceding and one following the ones at 07:16 UT. Finally, this study provides further examples where flare-ribbon locations can be explained when compared to QSLs and only, partially, when using separatrices.Comment: 42 pages, 15 figure

    Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?

    Full text link
    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.Comment: 20 pages, 7 figures, accepted for publication in RA

    Observation of an in-plane magnetic-field-driven phase transition in a quantum Hall system with SU(4) symmetry

    Full text link
    In condensed matter physics, the study of electronic states with SU(N) symmetry has attracted considerable and growing attention in recent years, as systems with such a symmetry can often have a spontaneous symmetry-breaking effect giving rise to a novel ground state. For example, pseudospin quantum Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two Landau levels close to degeneracy in a bilayer quantum Hall system. In the past several years, the exploration of collective states in other multi-component quantum Hall systems has emerged. Here we show the conventional pseudospin quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor around ν=4\nu=4. Within a narrow tilting range angle of 0.5 degrees, the activation energy increases as much as 12 K. While the origin of this puzzling observation remains to be exploited, we discuss the possibility of a long-sought pairing state of electrons with a four-fold degeneracy.Comment: 13 pages, 4 figure

    A non-variational approach to nonlinear stability in stellar dynamics applied to the King model

    Full text link
    In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was accessed by variational techniques. Here we propose a different, non-variational technique and use it to prove nonlinear stability of the King model against a class of spherically symmetric, dynamically accessible perturbations. This model is very important in astrophysics and was out of reach of the previous techniques
    corecore