In previous work by Y. Guo and G. Rein, nonlinear stability of equilibria in
stellar dynamics, i.e., of steady states of the Vlasov-Poisson system, was
accessed by variational techniques. Here we propose a different,
non-variational technique and use it to prove nonlinear stability of the King
model against a class of spherically symmetric, dynamically accessible
perturbations. This model is very important in astrophysics and was out of
reach of the previous techniques