7,705 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching ∼\sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT

    Full text link
    The anti--de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Ho\v{r}ava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attentions due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Ho\v{r}ava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Ho\v{r}ava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in λ=1\lambda=1 Ho\v{r}ava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter ϵ\epsilon close to unity. Sufficiently charged flat black holes for ϵ\epsilon close to unity, and sufficiently charged positively curved black holes with ϵ\epsilon close to zero, are also unstable. The implication to the Ho\v{r}ava-Lifshitz holographic superconductor is discussed.Comment: 15 pages, 6 figures. Updated version accepted by Phys. Rev. D, with corrections to various misprints. References update

    Optimisation of Fine Pitch Contactor and Test Board for QFN Package

    Get PDF
    Fine pitch contactor describes a contactor with smaller air gap between the contact pins. It is used for testing small portable devices. This work presents the optimised way of designing the 0.4 mm pitch contactor and test board for QFN package. The signal integrity of fine pitch test contactor has become a concern due to the small air-gap between the pins that leads to signal crosstalk and impedance mismatch issues. The same challenge had been seen when designing the fine pitch test board because of the requirement to meet 0.4 mm pitch for typical hand-held devices. It restricts the trace routing with typical design rules at the contactor mounting area due to the limited spaces. This would bring to impedance discontinuity and crosstalk effect. Therefore, optimised design rules on the fine pitch contactor and test board are necessary. Full-wave modelling and system level simulation were demonstrated to study the fine pitch design rules. While the full-wave modelling was to construct the contactor and test board components, the system level simulation was intended to study the signal transmission when propagating from one component to another. Overall, designing the fine pitch contactor requires extra study on the signal integrity and layout design. This paper presents a method to study and design the fine pitch contactor design. It reports the test board to achieve minimum losses and distortion test system for functional testing. Our simulation results for finepitch contactor model show that the return loss is less than 12 dB at 4 GHz

    Structural and molecular basis of the assembly of the TRPP2/PKD1 complex

    Get PDF
    Mutations in PKD1 and TRPP2 account for nearly all cases of autosomal dominant polycystic kidney disease (ADPKD). These 2 proteins form a receptor/ion channel complex on the cell surface. Using a combination of biochemistry, crystallography, and a single-molecule method to determine the subunit composition of proteins in the plasma membrane of live cells, we find that this complex contains 3 TRPP2 and 1 PKD1. A newly identified coiled-coil domain in the C terminus of TRPP2 is critical for the formation of this complex. This coiled-coil domain forms a homotrimer, in both solution and crystal structure, and binds to a single coiled-coil domain in the C terminus of PKD1. Mutations that disrupt the TRPP2 coiled-coil domain trimer abolish the assembly of both the full-length TRPP2 trimer and the TRPP2/PKD1 complex and diminish the surface expression of both proteins. These results have significant implications for the assembly, regulation, and function of the TRPP2/PKD1 complex and the pathogenic mechanism of some ADPKD-producing mutations
    • …
    corecore