26,881 research outputs found
Superconductivity in pure and electron doped MgB2: Transport properties and pressure effects
The normal state and superconducting properties of MgB2 and Mg1-xAlxB2 are
discussed based on structural, transport, and high pressure experiments. The
positive Seebeck coefficient and its linear temperature dependence for Tc<T<160
K provide evidence that the low-temperature transport in MgB2 is due to
hole-like metallic carriers. Structural and transport data show the important
role of defects as indicated by the correlation of Tc, the residual resistance
ratio, and the microstrain extracted from x-ray spectra. The decrease of Tc
with hydrostatic pressure is well explained by the strong-coupling BCS theory.
The large scatter of the pressure coefficients of Tc for different MgB2
samples, however, cannot be explained within this theory. We speculate that
pressure may increase the defect density, particularly in samples with large
initial defect concentration.Comment: Presented at NATO Advanced Research Workshop "New Trends in
Superconductivity", Yalta (Ukraine) 16-20 September, 200
On the Nature of X(4260)
We study the property of resonance by re-analyzing all experimental
data available, especially the cross section data. The final state
interactions of the , couple channel system are also taken
into account. A sizable coupling between the and is
found. The inclusion of the data indicates a small value of
eV.Comment: Refined analysis with new experimental data included. 13 page
Water Content and Superconductivity in Na0.3CoO2*yH2O
We report here the correlation between the water content and
superconductivity in Na0.3CoO2*yH2O under the influences of elevated
temperature and cold compression. The x-ray diffraction of the sample annealed
at elevated temperatures indicates that intergrowths exist in the compound at
equilibrium when 0.6 < y < 1.4. Its low-temperature diamagnetization varies
linearly with y, but is insensitive to the intergrowth, indicative of quasi-2D
superconductivity. The Tc-onset, especially, shifts only slightly with y. Our
data from cold compressed samples, on the other hand, show that the water-loss
non-proportionally suppresses the diamagnetization, which is suggestive of weak
links.Comment: 10 pages, 10 figures; submitted to Physica C (August 13, 2003
The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation
We characterize the first 40 Myr of evolution of circumstellar disks through
a unified study of the infrared properties of members of young clusters and
associations with ages from 2 Myr up to ~ 40 Myr: NGC 1333, NGC 1960, NGC 2232,
NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion
OB1a and OB1b, Taurus, the \b{eta} Pictoris Moving Group, \r{ho} Ophiuchi, and
the associations of Argus, Carina, Columba, Scorpius-Centaurus, and
Tucana-Horologium. Our work features: 1.) a filtering technique to flag noisy
backgrounds, 2.) a method based on the probability distribution of deflections,
P(D), to obtain statistically valid photometry for faint sources, and 3.) use
of the evolutionary trend of transitional disks to constrain the overall
behavior of bright disks. We find that the fraction of disks three or more
times brighter than the stellar photospheres at 24 {\mu}m decays relatively
slowly initially and then much more rapidly by ~ 10 Myr. However, there is a
continuing component until ~ 35 Myr, probably due primarily to massive clouds
of debris generated in giant impacts during the oligarchic/chaotic growth
phases of terrestrial planets. If the contribution from primordial disks is
excluded, the evolution of the incidence of these oligarchic/chaotic debris
disks can be described empirically by a log-normal function with the peak at 12
- 20 Myr, including ~ 13 % of the original population, and with a post-peak
mean duration of 10 - 20 Myr.Comment: accepted for publication, the Astrophysical Journal (2017
Pressure-induced phase transitions in AgClO4
AgClO4 has been studied under compression by x-ray diffraction and density
functional theory calculations. Experimental evidence of a structural phase
transition from the tetragonal structure of AgClO4 to an orthorhombic
barite-type structure has been found at 5.1 GPa. The transition is supported by
total-energy calculations. In addition, a second transition to a monoclinic
structure is theoretically proposed to take place beyond 17 GPa. The equation
of state of the different phases is reported as well as the calculated
Raman-active phonons and their pressure evolution. Finally, we provide a
description of all the structures of AgClO4 and discuss their relationships.
The structures are also compared with those of AgCl in order to explain the
structural sequence determined for AgClO4.Comment: 38 pages, 11 figures, 4 table
Increase in soil organic carbon by agricultural intensification in northern China
Acknowledgements. This research was supported by National Natural Science Foundation of China (no. 31370527 and 31261140367) and the National Science and Technology Support Program of China (no. 2012BAD14B01-2). The authors gratefully thank the Huantai Agricultural Station for providing of the Soil Fertility Survey data. We also thank Zheng Liang from China Agricultural University for the soil sampling and analysis in 2011. Thanks are extended to Jessica Bellarby for helpful discussion and suggestions.Peer reviewedPublisher PD
- …