20,259 research outputs found

    Generating EPR beams in a cavity optomechanical system

    Full text link
    We propose a scheme to produce continuous variable entanglement between phase-quadrature amplitudes of two light modes in an optomechanical system. For proper driving power and detuning, the entanglement is insensitive with bath temperature and QQ of mechanical oscillator. Under realistic experimental conditions, we find that the entanglement could be very large even at room temperature.Comment: 4.1 pages, 4 figures, comments are welcome; to appear in PRA, published version with corrections of typo

    A semismooth newton method for the nearest Euclidean distance matrix problem

    No full text
    The Nearest Euclidean distance matrix problem (NEDM) is a fundamentalcomputational problem in applications such asmultidimensional scaling and molecularconformation from nuclear magnetic resonance data in computational chemistry.Especially in the latter application, the problem is often large scale with the number ofatoms ranging from a few hundreds to a few thousands.In this paper, we introduce asemismooth Newton method that solves the dual problem of (NEDM). We prove that themethod is quadratically convergent.We then present an application of the Newton method to NEDM with HH-weights.We demonstrate the superior performance of the Newton method over existing methodsincluding the latest quadratic semi-definite programming solver.This research also opens a new avenue towards efficient solution methods for the molecularembedding problem

    Epitaxial graphene on SiC(0001): More than just honeycombs

    Full text link
    The potential of graphene to impact the development of the next generation of electronics has renewed interest in its growth and structure. The graphitization of hexagonal SiC surfaces provides a viable alternative for the synthesis of graphene, with wafer-size epitaxial graphene on SiC(0001) now possible. Despite this recent progress, the exact nature of the graphene-SiC interface and whether the graphene even has a semiconducting gap remain controversial. Using scanning tunneling microscopy with functionalized tips and density functional theory calculations, here we show that the interface is a warped carbon sheet consisting of three-fold hexagon-pentagon-heptagon complexes periodically inserted into the honeycomb lattice. These defects relieve the strain between the graphene layer and the SiC substrate, while still retaining the three-fold coordination for each carbon atom. Moreover, these defects break the six-fold symmetry of the honeycomb, thereby naturally inducing a gap: the calculated band structure of the interface is semiconducting and there are two localized states near K below the Fermi level, explaining the photoemission and carbon core-level data. Nonlinear dispersion and a 33 meV gap are found at the Dirac point for the next layer of graphene, providing insights into the debate over the origin of the gap in epitaxial graphene on SiC(0001). These results indicate that the interface of the epitaxial graphene on SiC(0001) is more than a dead buffer layer, but actively impacts the physical and electronic properties of the subsequent graphene layers

    Transport properties and anisotropy in rare earth doped CaFe2As2 single crystals with Tc above 40 K

    Full text link
    In this paper we report the superconductivity above 40 K in the electron doping single crystal Ca1-xRexFe2As2 (Re = La, Ce, Pr). The x-ray diffraction patterns indicate high crystalline quality and c-axis orientation. the resistivity anomaly in the parent compound CaFe2As2 is completely suppressed by partial replacement of Ca by rare earth and a superconducting transition reaches as high as 43 K, which is higher than the value in electron doping FeAs-122 compounds by substituting Fe ions with transition metal, even surpasses the highest values observed in hole doping systems with a transition temperature up to 38 K. The upper critical field has been determined with the magnetic field along ab-plane and c-axis, yielding the anisotropy of 2~3. Hall-effect measurements indicate that the conduction in this material is dominated by electron like charge carriers. Our results explicitly demonstrate the feasibility of inducing superconductivity in Ca122 compounds via electron doping using aliovalent rare earth substitution into the alkaline earth site, which should add more ingredients to the underlying physics of the iron-based superconductors.Comment: 21 pages, 7 figure

    Gamma-ray burst contributions to constraining the evolution of dark energy

    Full text link
    We explore the gamma-ray bursts' (GRBs') contributions in constraining the dark energy equation of state (EOS) at high (1.8<z<71.8 < z < 7) and at middle redshifts (0.5<z<1.80.5 < z < 1.8) and estimate how many GRBs are needed to get substantial constraints at high redshifts. We estimate the constraints with mock GRBs and mock type Ia supernovae (SNe Ia) for comparisons. When constraining the dark energy EOS in a certain redshift range, we allow the dark energy EOS parameter to vary only in that redshift bin and fix EOS parameters elsewhere to -1. We find that it is difficult to constrain the dark energy EOS beyond the redshifts of SNe Ia with GRBs unless some new luminosity relations for GRBs with smaller scatters are discovered. However, at middle redshifts, GRBs have comparable contributions with SNe Ia in constraining the dark energy EOS.Comment: 3 pages, 5 figures. Published in Astronomy and Astrophysics. Corrected referenc

    Cohomologically hyperbolic endomorphisms of complex manifolds

    Full text link
    We show that if a compact Kahler manifold X admits a cohomologically hyperbolic surjective endomorphism then its Kodaira dimension is non-positive. This gives an affirmative answer to a conjecture of Guedj in the holomorphic case. The main part of the paper is to determine the geometric structure and the fundamental groups (up to finite index) for those X of dimension 3.Comment: International Journal of Mathematics (to appear
    corecore