473 research outputs found

    Adaptive packet scheduling in cellular CDMA

    Get PDF
    An adaptive packet scheduling algorithm for cellular CDMA systems is proposed. The algorithm guarantees packet deadline and average data rate under the assumption of perfect power control. Channel condition is also considered to reduce the transmission power. © 2003 IEEE.published_or_final_versio

    The contribution of cause-effect link to representing the core of scientific paper—The role of Semantic Link Network

    Get PDF
    The Semantic Link Network is a general semantic model for modeling the structure and the evolution of complex systems. Various semantic links play different roles in rendering the semantics of complex system. One of the basic semantic links represents cause-effect relation, which plays an important role in representation and understanding. This paper verifies the role of the Semantic Link Network in representing the core of text by investigating the contribution of cause-effect link to representing the core of scientific papers. Research carries out with the following steps: (1) Two propositions on the contribution of cause-effect link in rendering the core of paper are proposed and verified through a statistical survey, which shows that the sentences on cause-effect links cover about 65% of key words within each paper on average. (2) An algorithm based on syntactic patterns is designed for automatically extracting cause-effect link from scientific papers, which recalls about 70% of manually annotated cause-effect links on average, indicating that the result adapts to the scale of data sets. (3) The effects of cause-effect link on four schemes of incorporating cause-effect link into the existing instances of the Semantic Link Network for enhancing the summarization of scientific papers are investigated. The experiments show that the quality of the summaries is significantly improved, which verifies the role of semantic links. The significance of this research lies in two aspects: (1) it verifies that the Semantic Link Network connects the important concepts to render the core of text; and, (2) it provides an evidence for realizing content services such as summarization, recommendation and question answering based on the Semantic Link Network, and it can inspire relevant research on content computing

    Three-dimensional visualization and characterization of polymeric self-assemblies by Transmission Electron Microtomography

    Get PDF
    Self-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep understanding of which is important for creating nanomaterials with superior physical properties, such as high-performance membranes with well-defined pore size and high-density data storage media. Because microphase-separated structures have become increasingly complicated with advances in precision polymerization, characterizing these complex morphologies is becoming increasingly difficult. Thus, microscopes capable of obtaining 3D images are required. In this article, we demonstrate that 3D-TEM is an essential tool for studying BCP nanostructures, especially those self-assembled during dynamical processes and under confined conditions.The first example is a dynamical process called order-order transitions (OOTs). Upon changing temperature or pressure or applying an external field, such as a shear flow or electric field, BCP nanostructures transform from one type of structure to another. The OOTs are examined by freezing the specimens in the middle of the OOT and then observing the boundary structures between the preexisting and newly formed nanostructures in three-dimensions. In an OOT between the bicontinuous double gyroid and hexagonally packed cylindrical structures, two different types of epitaxial phase transition paths are found. Interestingly, the paths depend on the direction of the OOT. The second example is BCP self-assemblies under confinement that have been examined by 3D-TEM. A variety of intriguing and very complicated 3D morphologies can be formed even from the BCPs that self-assemble into simple nanostructures, such as lamellar and cylindrical structures in the bulk (in free space).Although 3D-TEM is becoming more frequently used for detailed morphological investigations, it is generally used to study static nanostructures. Although OOTs are dynamical processes, the actual experiment is done in the static state, through a detailed morphological study of a snapshot taken during the OOT. Developing time-dependent nanoscale 3D imaging has become a hot topic. Here, the two main problems preventing the development of in situ electron tomography for polymer materials are addressed. First, the staining protocol often used to enhance contrast for electrons is replaced by a new contrast enhancement based on chemical differences between polymers. In this case, no staining is necessary. Second, a new 3D reconstruction algorithm allows us to obtain a high-contrast, quantitative 3D image from fewer projections than is required for the conventional algorithm to achieve similar contrast, reducing the number of projections and thus the electron beam dose. Combini

    Women in Otolaryngology

    Full text link

    Gravitational radiation from corotating binary neutron stars of incompressible fluid in the first post-Newtonian approximation of general relativity

    Get PDF
    We analytically study gravitational radiation from corotating binary neutron stars composed of incompressible, homogeneous fluid in circular orbits. The energy and the angular momentum loss rates are derived up to the first post-Newtonian (1PN) order beyond the quadrupole approximation including effects of the finite size of each star of binary. It is found that the leading term of finite size effects in the 1PN order is only O(GM∗/c2a∗)O(GM_{\ast}/c^2 a_{\ast}) smaller than that in the Newtonian order, where GM∗/c2a∗GM_{\ast}/c^2 a_{\ast} means the ratio of the gravitational radius to the mean radius of each star of binary, and the 1PN term acts to decrease the Newtonian finite size effect in gravitational radiation.Comment: 26 pages, revtex, 9 figures(eps), accepted for publication in Phys. Rev.

    What Makes Theatrical Performances Successful in China's Tourism Industry?

    Get PDF
    This study aims to explore the factors affecting the success of a popular tourist product, namely, theatrical performance, within the context of China's tourism industry and develop a model based on previously successful productions. Using qualitative software, 22 Chinese-language articles on theatrical performances are analyzed to generate a list of success factors, classified as internal and external. The internal factors are storyline and performing, market positioning and marketing strategy, investment and financial support, operation and management, performing team, outdoor venue, indoor/outdoor stage supporting facilities, continuous improvement, and production team. The external factors are collaboration between cultural industries and local tourism, government support, privatization, and social and cultural effect. This study also provides suggestions for the future development of theatrical performances in China

    \u3cem\u3eSpitzer\u3c/em\u3e Reveals what is Behind Orion\u27s Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions south-east (SE) of the Bright Bar in the Orion Nebula, along a radial from the exciting star Ξ1 Ori C, extending from 2.6 to 12.1 arcmin. Our Cycle 5 programme obtained deep spectra with matching Infrared Spectrograph (IRS) short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin (the ‘Huygens’ Region). The extreme sensitivity of Spitzer in the 10–37 ÎŒm spectral range permitted us to measure many lines of interest to much larger distances from Ξ1 Ori C. Orion is the benchmark for studies of the interstellar medium, particularly for elemental abundances. Spitzer observations provide a unique perspective on the neon and sulphur abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3 +) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.02 ± 0.02) × 10−4 or in terms of the conventional expression, 12 + log(Ne/H) = 8.01 ± 0.01. We obtained corresponding new ground-based spectra at Cerro Tololo Inter-American Observatory (CTIO). These optical data are used to estimate the electron temperature, electron density, optical extinction and the S+/S++ ionization ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase sulphur abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68 ± 0.25) × 10−6 or 12 + log(S/H) = 6.89 ± 0.02. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7–6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =13.0 ± 0.2. We derive the electron density (Ne) versus distance from Ξ1 Ori C for [S III] (Spitzer) and [S II] (CTIO). Both distributions are for the most part decreasing with increasing distance. The values for Ne[S II] fall below those of Ne[S III] at a given distance except for the outermost position. This general trend is consistent with the commonly accepted blister model for the Orion Nebula. The natural shape of such a blister is concave with an underlying decrease in density with increasing distance from the source of photoionization. Our spectra are the deepest ever taken in these outer regions of Orion over the 10–37 ÎŒm range. Tracking the changes in ionization structure via the line emission to larger distances provides much more leverage for understanding the far less studied outer regions. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ∌12 arcmin from Ξ1 Ori C. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region. The Spitzerspectra are consistent with the Bright Bar being a high-density ‘localized escarpment’ in the larger Orion Nebula picture. Hard ionizing photons reach most solid angles well SE of the Bright Bar. The so-called Orion foreground ‘Veil’, seen prominently in projection at our outermost position 12 arcmin from Ξ1 Ori C, is likely an H II region–photo-dissociation region (PDR) interface. The Spitzer spectra show very strong enhancements of PDR lines –[Si II] 34.8 ÎŒm, [Fe II] 26.0 ÎŒm and molecular hydrogen – at the outermost position

    Spitzer reveals what's behind Orion's Bar

    Get PDF
    We present Spitzer Space Telescope observations of 11 regions SE of the Bright Bar in the Orion Nebula, along a radial from the exciting star theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep spectra with matching IRS short-high (SH) and long-high (LH) aperture grid patterns. Most previous IR missions observed only the inner few arcmin. Orion is the benchmark for studies of the ISM particularly for elemental abundances. Spitzer observations provide a unique perspective on the Ne and S abundances by virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is especially well determined, with a value of (1.01+/-0.08)E-4. We obtained corresponding new ground-based spectra at CTIO. These optical data are used to estimate the electron temperature, electron density, optical extinction, and the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment for the total gas-phase S abundance because no S+ line is observed by Spitzer. The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio may be determined even when the weaker hydrogen line, H(7-6) here, is not measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S = 13.0+/-0.6. We derive the electron density versus distance from theta1OriC for [S III] and [S II]. Both distributions are for the most part decreasing with increasing distance. A dramatic find is the presence of high-ionization Ne++ all the way to the outer optical boundary ~12' from theta1OriC. This IR result is robust, whereas the optical evidence from observations of high-ionization species (e.g. O++) at the outer optical boundary suffers uncertainty because of scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
    • 

    corecore