142 research outputs found
Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes
Single-walled carbon nanotubes are strongly correlated systems with large
Coulomb repulsion between two electrons occupying the same orbital.
Within a molecular Hamiltonian appropriate for correlated -electron
systems, we show that optical excitations polarized parallel to the nanotube
axes in the so-called metallic single-walled carbon nanotubes are to excitons.
Our calculated absolute exciton energies in twelve different metallic
single-walled carbon nanotubes, with diameters in the range 0.8 - 1.4 nm, are
in nearly quantitative agreement with experimental results. We have also
calculated the absorption spectrum for the (21,21) single-walled carbon
nanotube in the E region. Our calculated spectrum gives an excellent fit
to the experimental absorption spectrum. In all cases our calculated exciton
binding energies are only slightly smaller than those of semiconducting
nanotubes with comparable diameters, in contradiction to results obtained
within the {\it ab initio} approach, which predicts much smaller binding
energies. We ascribe this difference to the difficulty of determining the
behavior of systems with strong on-site Coulomb interactions within theories
based on the density functional approach. As in the semiconducting nanotubes we
predict in the metallic nanotubes a two-photon exciton above the lowest
longitudinally polarized exciton that can be detected by ultrafast pump-probe
spectroscopy. We also predict a subgap absorption polarized perpendicular to
the nanotube axes below the lowest longitudinal exciton, blueshifted from the
exact midgap by electron-electron interactions
Magnetic structures and magnetoelastic coupling of Fe-doped hexagonal manganites LuMn1-xFexO3 (0 < x < 0.3)
We have studied the crystal and magnetic structures of Fe-doped hexagonal
manganites LuMn1-xFexO3 (x = 0, 0.1, 0.2, and 0.3) by using bulk magnetization
and neutron powder diffraction methods. The samples crystalize consistently in
a hexagonal structure and maintain the space group P63cm from 2 to 300 K. The
N\'eel temperature TN increases continuously with increasing Fe-doping. In
contrast to a single {\Gamma}4 representation in LuMnO3, the magnetic ground
state of the Fe-doped samples can only be described with a spin configuration
described by a mixture of {\Gamma}3 (P63'cm') and {\Gamma}4 (P63'c'm)
representations, whose contributions have been quantitatively estimated. The
drastic effect of Fe-doping is highlighted by composition-dependent spin
reorientations. A phase diagram of the entire composition series is proposed
based on the present results and those reported in literature. Our result
demonstrates the importance of tailoring compositions in increasing magnetic
transition temperatures of multiferroic systems.Comment: 18 pages, 9 figure
Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein
Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein
Differential Conservation and Divergence of Fertility Genes boule and dazl in the Rainbow Trout
10.1371/journal.pone.0015910PLoS ONE61
A Novel Strategy to Screen Bacillus Calmette-Guérin Protein Antigen Recognized by γδ TCR
BACKGROUND: Phosphoantigen was originally identified as the main γδ TCR-recognized antigen that could activate γδ T cells to promote immune protection against mycobacterial infection. However, new evidence shows that the γδ T cells activated by phosphoantigen can only provide partial immune protection against mycobacterial infection. In contrast, whole lysates of Mycobacterium could activate immune protection more potently, implying that other γδ TCR-recognized antigens that elicit protective immune responses. To date, only a few distinct mycobacterial antigens recognized by the γδ TCR have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we established a new approach to screen epitopes or protein antigens recognized by the γδ TCR using Bacillus Calmette-Guérin- (BCG-) specific γ TCR transfected cells as probes to pan a 12-mer random-peptide phage-displayed library. Through binding assays and functional analysis, we identified a peptide (BP3) that not only binds to the BCG-specific γδ TCR but also effectively activates γδ T cells isolated from human subjects inoculated with BCG. Importantly, the γδ T cells activated by peptide BP3 had a cytotoxic effect on THP-1 cells infected with BCG. Moreover, the oxidative stress response regulatory protein (OXYS), a BCG protein that matches perfectly with peptide BP3 according to bioinformatics analysis, was confirmed as a ligand for the γδ TCR and was found to activate γδ T cells from human subjects inoculated with BCG. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study provides a novel strategy to identify epitopes or protein antigens for the γδ TCR, and provides a potential means to screen mycobacterial vaccines or candidates for adjuvant
Cyclophilin E Functions as a Negative Regulator to Influenza Virus Replication by Impairing the Formation of the Viral Ribonucleoprotein Complex
The nucleoprotein (NP) of influenza A virus is a multifunctional protein that plays a critical role in the replication and transcription of the viral genome. Therefore, examining host factors that interact with NP may shed light on the mechanism of host restriction barriers and the tissue tropism of influenza A virus. Here, Cyclophilin E (CypE), a member of the peptidyl-propyl cis-trans isomerase (PPIase) family, was found to bind to NP and inhibit viral replication and transcription.In the present study, CypE was found to interact with NP but not with the other components of the viral ribonucleoprotein complex (vRNP): PB1, PB2, and PA. Mutagenesis data revealed that the CypE domain comprised of residues 137–186 is responsible for its binding to NP. Functional analysis results indicated that CypE is a negative regulator in the influenza virus life cycle. Furthermore, knock-down of CypE resulted in increased levels of three types of viral RNA, suggesting that CypE negatively affects viral replication and transcription. Moreover, up-regulation of CypE inhibited the activity of influenza viral polymerase. We determined that the molecular mechanism by which CypE negatively regulates influenza virus replication and transcription is by interfering with NP self-association and the NP-PB1 and NP-PB2 interactions.CypE is a host restriction factor that inhibits the functions of NP, as well as viral replication and transcription, by impairing the formation of the vRNP. The data presented here will help us to better understand the molecular mechanisms of host restriction barriers, host adaptation, and tissue tropism of influenza A virus
- …