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On the basis of the microstructure of the cross-section of a beetle’s elytra, three bio-inspired lightweight structures were designed 
and built from acrylonitrile butadiene styrene plastic with a three-dimensional printer. The mechanical properties of three light-
weight structures were analyzed and compared employing the finite element method, and quasi-static compression experiments 
and a three-point bending test on the structure samples were carried out using an electronic universal testing machine to verify the 
effectiveness of the finite element method. The results show that all three bio-structures were lightweight and had excellent me-
chanical properties. In particular, the bio-structure with spherical holes and hollow columns perpendicular to the top and bottom 
surfaces best imitated the microstructure of the cross-section of the Cybister elytra and had the greatest specific strength/stiffness 
in compression and bending. Finally, a preliminary optimization design was obtained for this bio-structure to further improve its 
specific strength and specific stiffness to 31.82 kN m/kg and 108.73 kN m2/kg respectively. 

elytra, microstructure, bio-inspired lightweight structure, finite element analysis 

 

Citation:  Guo C, Song W W, Dai Z D . Structural design inspired by beetle elytra and its mechanical properties. Chin Sci Bull, 2012, 57: 941947, doi: 
10.1007/s11434-011-4956-3  

 

 

 
Low weight and high strength are preferred properties of 
materials used for railways, ships, vehicles and aerospace 
structures. Statistically, savings of $300, $3000, or $30000 
may be made by trimming just 1 pound from the weight of 
civil aircraft, fighter aircraft, or satellites and space stations, 
respectively [1]. Since a fuel savings of 5% results from a 
vehicle weight reduction of 10%, reducing weight is one of 
the most effective ways for the automobile industry to trim 
vehicle fuel consumption [1]. Additionally, a lightweight 
structure plays a role in reducing noise, reducing CO2 emis-
sions and protecting the environment. Adopting lightweight 
alloys (e.g., Ti, Al, Mg-Li) and lightweight structures (e.g., 
honeycomb structure, folded structures, foam-like structures, 
and fiber-reinforced structures) is an oft-used technique to 
make material structures lighter, but the topology of light-
weight structures is far from optimized. Almost all bio-
materials on Earth are composites, and significant progress 
has been made in understanding the high toughness of bio-

logical nanocomposites from various points of view, in-
cluding their hierarchical structures, the effects of the me-
chanical properties of a protein on stress redistribution and 
energy dissipation, protein-mineral interface roughness and 
reduction of stress concentration at a crack tip, and mineral 
bridges on the surface of mineral platelets [2]. The superior 
performance of many biomaterials inspires the design of 
advanced materials and structures with the properties of low 
weight, high intensity, and high damage resistance. The 
American Air Force has supported projects that use the bee-
tle exoskeleton as a model of a fiber-reinforced composite 
with a high stiffness-to-weight ratio and projects that use 
the mollusc shell as a model of a laminated composite for 
high-impact-resistant metal matrix composites [3]. Ötzen 
investigated the microstructural basis of a reduced stress 
concentration around the primary nutrient foramen of the 
equine third metacarpus and applied it to design flight-vehicle 
structures [4–7]. 

Beetles are a large family in nature. During millions of 
years of evolution and adaptation, some beetles developed 
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their forewings into elytra, which are composed of materials 
such as chitin fiber, collagen, and amylase, and are charac-
terized by a rigid texture and a particular form whose pri-
mary purpose is to protect the body and wings beneath the 
elytra, maintain flight balance, and control swerving [8]. 
Because of the excellent mechanical properties of elytra, 
such as high intensity and toughness, anisotropy, and the 
ability to self-heal, they serve as good bionic objects, and 
inspire the design of optimized structures that are light-
weight, reliable, highly efficient, energy saving, and easy to 
control when used for spacecraft or aircraft parts [9]. 

Many recent studies on elytra have focused primarily on 
the surface morphology [10–15], structural coloration [16], 
micro-structure [17–20], the mechanism of coupling be-
tween elytra [21,22], and measurement of the mechanical 
properties of elytra [23], while studies on elytra-inspired 
lightweight structural design, manufacture and mechanical 
analysis have been rarely reported. In this paper, on the ba-
sis of the microstructure of the cross-section of Cybister 
(Cybister tripunctatus Olivier) elytra, three bio-inspired 
lightweight structures were designed and built with a three- 
dimensional (3D) printer, their mechanical properties were 
analyzed employing the finite element method, and samples 
were tested using an electronic universal testing machine. 
The results show that all three bio-structures are lightweight 
and have excellent mechanical properties. In particular, the bio- 
structure with spherical holes and hollow columns perpen-
dicular to the top and bottom surfaces best imitated the mi-
crostructure of the cross-section of the Cybister elytra and 
had the best mechanical properties. A preliminary optimum 
design was obtained for this bio-structure with the objective 
of maximizing the specific strength and specific stiffness. 

1  Mechanical properties and microstructure of 
the cross-section of Cybister elytra  

In nature, a beetle’s elytrum is made of a typical lightweight 

biomaterial with high strength. According to references 
[20,23], the Cybister elytra have a duty ratio (cavity area to 
elytra area) of about 22% and density of 0.89 × 103 kg/m3, 
while their average hardness and Young’s modulus are 0.48 
and 8.21 GPa respectively, and their transverse and longitu-
dinal tensile strengths are as high as 169.2 ± 22.5 and 194.5 

± 23.4 MPa respectively. We know that a structure deter-
mines the mechanical properties, so the microstructure of 
the cross-section of Cybister elytra is of great interest to 
scientists. According to scanning electron microscopy ob-
servations, the elytra have a similar morphological structure 
in lateral and longitudinal cross-sections. Both cross-sections 
are composed of cavities, fiber bundles that connect inner 
layers to the outer cuticular layers and acting as bridge piers, 
several chitin fiber layers and a dense black epicuticle (Fig-
ure 1). The thickness of the epicuticle (a single chitin fiber 
layer), the average diameter of cavities and the inner diam-
eter of the hollow bridge pier are 12, 2, 80–95 and 30–40 
μm, respectively. The cavities in the elytra effectively re-
duce the structure weight over a span of about 250 m. 

2  Elytra-inspired lightweight structural design 

As the cavities and the hollow bridge piers are the main 
weight-reducing parts of elytra, three bio-inspired light-
weight structures with cavities and hollow columns were 
designed (see Figure 2). Structure I (Figure 2(a)) is an imi-
tation of the microstructure of the cross-section of elytra 
only in the lateral direction, and consists of long through- 
holes and hollow columns perpendicular to the top and bot-
tom surfaces. Structure II (Figure 2(b)) consists of spherical 
holes and hollow columns perpendicular to the top and bot-
tom surfaces to imitate the microstructure of the cross-section 
of elytra both in the lateral and longitudinal directions. 
Structure III (Figure 2(c)) consists of a honeycomb network 
and columns located on the nodes of the honeycomb-shaped 
polygon following the suggestion of Chen et al. [24] based  

 

Figure 1  Microstructures of the lateral and longitudinal cross-sections of elytra. (a) Microstructure of the longitudinal cross-section of elytra; (b) micro-
structure of the lateral cross-section of elytra. EPI, Epicuticle; FL, Fiber layers; CAV, Cavity; BP, Bridge pier. 
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Figure 2  Bio-inspired lightweight structures (dimension unit, mm). (a) Structure I; (b) structure II; (c) structure Ш. 

on the observation of the microstructure of the whole fore-
wing of Allomyrina dichotoma. 

3  Mechanical analysis of bio-inspired structures 

Considering the possible application of the bio-inspired 
structures to the floorboards and body skeleton of subway 
trains and cars, the analysis mainly focused on the compres-
sive and bending ability of the bio-inspired structures.  

3.1  Quasi-static compression analysis 

(1) Finite element modeling.  3D models of bio-structures 
were built with SolidWorks and then transferred into an 
ANSYS Workbench environment. The finite element type 
was Solid 186, and the total numbers of nodes and elements 
of three structures are given in Table 1. The main dimen-
sions of the three structures were the same to allow com-
parison of the mechanical properties. The material of the 
models was acrylonitrile butadiene styrene (ABS) plastic, 
the same material used for structure samples built with a 3D 
printer. The material constants were set as density of 1.04 × 

103 kg/m3, Young’s modulus of 1.2 × 103 MPa, Poisson’s 
ratio of 0.3 and a yield limit of 22 MPa. 

(2) Load and boundary constraints.  Similar to the load 
and boundary constraints in the quasi-static compression 
experiment of the honeycomb structure [25], displacement  

Table 1  Total numbers of nodes and elements of the bio-structures  

Finite element model Total nodes Total elements 

Structure I 39474 23757 

Structure II 23017 13300 

Structure III 18130 10338 

was applied as a load to the top surface of the model step by 
step. Here, the number of load steps should be chosen rea-
sonably. The model bottom was fixed for all six degrees of 
freedom (DOFs).  

(3) Results analysis.  To compare the compression 
strengths of the three structures, their compression force- 
displacement curves were determined as shown in Figure 3. 
The results show that for all three structures, the compres-
sion force initially changed linear elastically with the dis-
placement. However, when the compression force reached 
the critical yield limit, the force changed little as the dis-
placement continued to increase, demonstrating the struc-
ture had already reached the elastic-plastic stage. The stress 
corresponding to displacement of 2 mm was defined as the 
compression strength of the structure [26]. Taking the av-
erage density of the structures into account, the specific 
strength of the three structures were obtained (Table 2). It is 
seen that the compression strength and specific compression 
strength of structure II were the greatest. Given straight-line 
fitting of the linear part of the curve, the linear slope K (i.e., 
the stiffness of the structure) could be obtained, which di-
vided by its average density, gave the specific stiffness of 
the structure (Table 2). The results show that the stiffness 
and specific stiffness of structure II were the greatest, sug-
gesting structure II has the best ability to resist compression 
deformation.  

3.2  Three-point bending analysis 

The bending strength of the three structures was analyzed 
and compared employing the finite element method, and the 
abilities of the structures to resist bending deformation were 
further computed. At the same time, a three-point bending 
test was performed to prove the reliability of the finite ele-
ment method. 

(1) Finite element modeling.  As mentioned in Section  
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Figure 3  Compression force-displacement curves of the three structures. 

Table 2  Specific compression stiffness and specific compression strength 
of the three structures  

Items Structure I Structure II Structure III 

Stiffness (N/m) 5.09×107 6.08×107 4.54×107 

Average density (kg/m3) 0.69×103 0.68×103 0.66×103 

Specific compression 
stiffness (kN m2/kg) 

73.77 89.41 68.79 

Compression strength (MPa) 13.78 15.91 14.93 

Specific compression 
strength (kN m/kg) 

19.97 23.40 22.62 

 

3.1, 3D models of the structures were imported into the 
ANSYS Workbench environment from SolidWorks (see 
Figure 4). The finite element type was again Solid 186. The 
total numbers of nodes and elements of the three structures 
are given in Table 3. The dimensions of the three models 
were 120 mm × 30 mm × 20 mm. The wide side of the mod-
el section was chosen as the supporting side, the pressure 
head and the two supports were designated as rigid bodies,  

 

Figure 4  Finite element model in the three-point bending analysis. 

Table 3  Total numbers of nodes and elements of the bio-structures  

Finite element model Total nodes Total elements 

Structure I 37566 27576 

Structure II 28008 15999 

Structure III 25130 11833 

and the span of the two supports was 80 mm. The material 
of the models was again ABS plastic. 

(2) Constraints and contact definition.  The nodes of the 
two supports were fixed for all six DOFs, and the nodes of 
the pressure head could only move vertically (in the Y di-
rection), with the other five DOFs being constrained. Fol-
lowing [27], the contact between the structural model and 
supports and that between the structural model and the 
pressure head were defined as being frictionless. 

(3) Results analysis.  To compare the bending strengths 
of the three structures, the reaction force and the displace-
ment produced at the pressure head were determined to plot 
the bending force-displacement curve (Figure 5). It was 
shown that for all three structures, the bending force initial-
ly changed almost linearly until it reached the critical buck-
ling limit and then began to decrease, demonstrating the 
collapse of cavities in the structure. Given the straight-line 
fitting of the linear part of the curve, the linear slope K (i.e., 
the bending stiffness of the structure) was obtained, which 
divided by its average density gave the specific bending 
stiffness of the structure (Table 4). The results show that the 
stiffness and specific stiffness of structure II were the 
greatest, suggesting structure II had the best ability to resist 
bending deformation. 

Here, the stress corresponding to the maximum bending 
force was defined as the bending strength of the structure. 
Taking the average density of the structure into account, the  

 

Figure 5  Bending force-displacement curves of three structures. 

Table 4  Specific bending stiffness and specific bending strength of the 
three structures 

Items Structure I Structure II Structure III 

Bending stiffness (N/m) 1.17×106 1.26×106 1.02×106 

Average density (kg/m3) 0.69×103 0.68×103 0.66×103 

Specific bending  
stiffness (kN m2/kg) 

1.70 1.85 1.55 

Bending strength (MPa) 16.35 27.25 13.62 

Specific bending  
strength (kN m/kg) 

23.70 40.07 20.64 
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specific strength of the structure can be obtained. From Ta-
ble 4, it is seen that the bending strength and specific bend-
ing strength of structure II were the greatest. 

4  Mechanical tests of bio-inspired lightweight 
structures 

4.1  Manufacture of bio-inspired lightweight structures 

Considering the structural complexity of the models and the 
convenience and speed of building the models, three struc-
tural samples were built with a 3D printer (FDM 360mc, 
USA; the raw material used was ABS plastic). The dimen-
sions were the same as for the finite element models (Figure 
6). Here, mechanical tests were performed on an electronic 
universal testing machine (Shenzhen, China), and the results 
were used to verify the analysis results of the finite element 
method. 

4.2  Mechanical tests of bio-inspired lightweight struc-
tures 

A quasi-static compression experiment and a three-point 
bending test were performed on an electronic universal 
testing machine with load changing between 0 and 105 N. 
The quasi-static compression is a single-direction force 
produced by moving the pressure head with a constant ve-
locity of 1 mm/min. The force produced on the pressure 

head and the displacement due to the compression defor-
mation of the sample were recorded and monitored by sen-
sors. For the three-point bending test, the structural sample 
was fixed with the wide side of the section on the supports. 
The span was set as 80 mm. Similarly, the pressure head 
moved with a constant velocity of 1 mm/min at the middle 
of the span, and the force and the corresponding displace-
ment of the pressure head were also recorded by sensors. 
Figures 7 and 8 compare the experimental results with the 
finite element method analysis results. Although there is a 
difference between the experimental and analytical results 
in Figure 8 (i.e., the force indicated by the experimental 
curve sharply declined after reaching a maximum owing to 
structural fracture, while the force indicated by the analyti-
cal curve declined gently), it is seen that the experimental 
results are in good accordance with the analysis results in 
the linear-elastic stage for both quasi-static compression and 
three-point bending, demonstrating the effectiveness and 
reliability of the finite element method analysis. 

5  Parameter optimization of the bio-inspired 
lightweight structure 

According to the analysis above, structure II has the best 
mechanical properties in compression and bending, and its 
structure is the closest to the microstructure of the cross- 
section of the Cybister elytra. Therefore, it was chosen as  

 

Figure 6  Bio-inspired lightweight structural samples built with a 3D printer. (a) Samples built for the quasi-static compression experiment; (b) samples 
built for the three-point bending test. 

 

Figure 7  Quasi-static compression experimental results and finite element method results. (a) Structure I; (b) structure II; (c) structure III. 
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Figure 8  Three-point bending test results and finite element method results. (a) Structure I; (b) structure II; (c) structure III. 

the model for further parameter optimization. Here, the pre-
liminary optimized design was obtained under the assumption 
that the structure is only subjected to a compression force. 
The optimization objective is maximum specific strength and 
maximum specific stiffness. The design variables and con-
straints are given in Figure 9 and Table 5. The optimization 
design was obtained using DesignXplorer in ANSYS 
Workbench. The optimum results are presented in Table 6. 

It is seen that, through optimization design, the specific 
strength of bio-structure II increased 35.9% to 31.82 kN m/kg, 
which is much higher than the values of 4–16 kN m/kg for 
stainless-steel hollow-sphere foam and Al foam [28]. At the 
same time, its specific stiffness increased 21.6% to 108.73 
(kN m/kg). 

6  Conclusions 

(1) Cybister elytrum is an ideal biomimetic model for de-
signing lightweight structures with higher specific intensi-
ty/specific stiffness. In this paper, three bio-inspired light-
weight structures were designed and manufactured.  

(2) The mechanical properties of bio-inspired lightweight 
structures were analyzed effectively employing the finite 
element method and tested using an electronic universal 
testing machine. The reliability of analysis results was 
demonstrated in mechanical tests.   

(3) With parameter optimization, the compressive me-
chanical properties of the bio-inspired lightweight structure 
improved dramatically. The specific strength reached 31.82 
kN m/kg, which is much higher than that of stainless-steel 
hollow-sphere foam and Al foam. The specific stiffness  

increased to 108.73 kN m2/kg. The maximum stress de-
creased from 22.47 to 13.11 MPa. 

 

Figure 9  Structure II and chosen parameters. 

Table 5  Variables and constraints (mm) 

Variables Minimum Maximum Original value 

DS_R1 3 8 6 

DS_L1 18 22 20 

DS_L2 18 22 20 

DS_R2 2 5 3 

DS_L3 18 22 20 

DS_L4 18 22 20 
 

Table 6  Optimum results 

Parameters DS_R1 DS_L1 DS_L2 DS_R2 DS_L3 DS_L4 

Initial value (mm) 6 20 20 3 20 20 

Optimization value (mm) 4.14 19.69 19.95 4.31 18.09 18.02 

Optimization results Stress maximum (MPa) Specific strength (kN m/kg) Specific stiffness (kN m2/kg) 

Initial value 22.47 23.40 89.41 

Optimization results 13.11 31.82 108.73 
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