12 research outputs found

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    Simultaneous Pattern Classification and Multidomain Association Using Self-Structuring Kernel Memory Networks

    No full text

    A2^2ILU: Auto-accelerated ILU Preconditioner for Sparse Linear Systems

    No full text

    Noninvasive BCIs: Multiway Signal-Processing Array Decompositions

    No full text
    Brain computer interfaces use electric, magnetic, or hemodynamic brain signals to control external devices such as computers, switches, wheelchairs, or neuroprostheses. While BCI research endeavors to create new communication channels for severely handicapped people using their brain signals, recent efforts also have been focused on developing potential applications in rehabilitation, multimedia communication, virtual reality, and entertainment and relaxation. To attain high-quality brain data and, thus, a reliable BCI system, we first need to create the stimulus conditions or mental task setting that will generate maximally measurable and classifiable brain states.X1179sciescopu

    A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update

    Get PDF
    International audienceObjective: Most current Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately 10 years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach: We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results: We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance: This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these Review of Classification Algorithms for EEG-based BCI 2 methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI
    corecore