18,251 research outputs found

    Mixture of multiple copies of maximally entangled states is quasi-pure

    Full text link
    Employing the general BXOR operation and local state discrimination, the mixed state of the form \rho^{(k)}_{d}=\frac{1}{d^{2}}\sum_{m,n=0}^{d-1}(|\phi_{mn}><\phi_{mn}|)^{\otim es k} is proved to be quasi-pure, where {∣ϕmn>}\{|\phi_{mn}>\} is the canonical set of mutually orthogonal maximally entangled states in d×dd\times d. Therefore irreversibility does not occur in the process of distillation for this family of states. Also, the distillable entanglement is calculated explicitly.Comment: 6 pages, 1 figure. The paper is subtantially revised and the general proof is give

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure

    A la memoria de Francisco Bartrina d'Aixemús

    Get PDF

    Los Arenales marítimos de Ceuta-Rincón y su flora

    Get PDF

    Real-time diffuse optical tomography using reduced-order light propagation models based on a priori anatomical and functional information

    Get PDF
    This paper proposes a new fast 3D image reconstruction algorithm for Diffuse Optical Tomography using reduced order polynomial mappings from the space of optical tissue parameters into the space of flux measurements at the detector locations. The polynomial mappings are constructed through an iterative estimation process involving structure detection, parameter estimation and cross-validation using data generated by simulating a diffusion approximation of the radiative transfer equation incorporating a priori anatomical and functional information provided by MR scans and prior psychological evidence. Numerical simulation studies demonstrate that reconstructed images are remarkably similar in quality as those obtained using the standard approach, but obtained at a fraction of the time

    Self-normalizing phase measurement in multimode terahertz spectroscopy based on photomixing of three lasers

    Full text link
    Photomixing of two near-infrared lasers is well established for continuous-wave terahertz spectroscopy. Photomixing of three lasers allows us to measure at three terahertz frequencies simultaneously. Similar to Fourier spectroscopy, the spectral information is contained in an nterferogram, which is equivalent to the waveform in time-domain spectroscopy. We use one fixed terahertz frequency \nu_ref to monitor temporal drifts of the setup, i.e., of the optical path-length difference. The other two frequencies are scanned for broadband high-resolution spectroscopy. The frequency dependence of the phase is obtained with high accuracy by normalizing it to the data obtained at \nu_ref, which eliminates drifts of the optical path-length difference. We achieve an accuracy of about 1-2 microns or 10^{-8} of the optical path length. This method is particularly suitable for applications in nonideal environmental conditions outside of an air-conditioned laboratory.Comment: 5 pages, 5 figure

    An unusual renal colic: A tribute to Joseph Hyrtl (1810–1894) and Max Brödel (1870–1941)

    Get PDF
    • …
    corecore