Photomixing of two near-infrared lasers is well established for
continuous-wave terahertz spectroscopy. Photomixing of three lasers allows us
to measure at three terahertz frequencies simultaneously. Similar to Fourier
spectroscopy, the spectral information is contained in an nterferogram, which
is equivalent to the waveform in time-domain spectroscopy. We use one fixed
terahertz frequency \nu_ref to monitor temporal drifts of the setup, i.e., of
the optical path-length difference. The other two frequencies are scanned for
broadband high-resolution spectroscopy. The frequency dependence of the phase
is obtained with high accuracy by normalizing it to the data obtained at
\nu_ref, which eliminates drifts of the optical path-length difference. We
achieve an accuracy of about 1-2 microns or 10^{-8} of the optical path length.
This method is particularly suitable for applications in nonideal environmental
conditions outside of an air-conditioned laboratory.Comment: 5 pages, 5 figure