19 research outputs found

    Complete mineralisation of dimethylformamide by Ochrobactrum sp. DGVK1 isolated from the soil samples collected from the coalmine leftovers

    No full text
    A bacterial strain DGVK1 capable of using N,N-dimethylformamide (DMF) as sole source of carbon and nitrogen was isolated from the soil samples collected from the coalmine leftovers. The molecular phylogram generated using the complete sequence of 16S rDNA of the strain DGVK1 showed close links to the bacteria grouped under Brucellaceae family that belongs to alphaproteobacteria class. Specifically, the 16S rDNA sequence of strain DGVK1 has shown 97% similarity to Ochrobactrum anthropi LMG 3331 (D12794). This bacterium has also shown impressive growth on dimethylamine, methylamine, formaldehyde and formate that are considered to be the prominent catabolic intermediates of DMF. DMF degradation has led to the accumulation of ammonia and dimethylamine contributing to the increase of pH of the medium. The DMF-grown resting cells of Ochrobactrum sp. DGVK1 have also contributed for the release of ammonia when resting cell suspension was added to phosphate buffer containing DMF. Similar experiments done with the glucose-grown cultures have not produced ammonia and thus indicating the inducible nature of DMF-degrading enzymes in Ochrobactrum sp. DGVK1. Further, dimethylformamidase, dimethylamine dehydrogenase and methylamine dehydrogenase, the key enzymes involved in the degradation of DMF, were assayed, and the activities of these enzymes were found only in DMF-grown cultures further confirming the inducible nature of the DMF degradation. Based on these results, DMF degradation pathway found in Ochrobactrum sp. DGVK1 has been proposed

    Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells

    No full text
    International audienceHuman adipose tissue (hAT) is constituted of structural units termed lobules, the organization of which remains to be defined. Here we report that lobules are composed of two extracellular matrix compartments, i.e., septa and stroma, delineating niches of CD45−/CD34+/CD31− progenitor subsets characterized by MSCA1 (ALPL) and CD271 (NGFR) expression. MSCA1+ adipogenic subset is enriched in stroma while septa contains mainly MSCA1−/CD271− and MSCA1−/CD271 high progenitors. CD271 marks myofibroblast precursors and NGF ligand activation is a molecular relay of TGFβ-induced myofibroblast conversion. In human subcutaneous (SC) and visceral (VS) AT, the progenitor subset repartition is different, modulated by obesity and in favor of adipocyte and myofibroblast fate, respectively. Lobules exhibit depot-specific architecture with marked fibrous septa containing mesothelial-like progenitor cells in VSAT. Thus, the human AT lobule organization in specific progenitor subset domains defines the fat depot intrinsic capacity to remodel and may contribute to obesity-associated cardiometabolic risks

    Identification of potential Campylobacter jejuni genes involved in biofilm formation by EZ-Tn5 Transposome mutagenesis

    Get PDF
    Background: Biofilm formation has been suggested to play a role in the survival of Campylobacter jejuni in the environment and contribute to the high incidence of human campylobacteriosis. Molecular studies of biofilm formation by Campylobacter are sparse. Results: We attempted to identify genes that may be involved in biofilm formation in seven C. jejuni strains through construction of mutants using the EZ-Tn5 Transposome system. Only 14 mutants with reduced biofilm formation were obtained, all from one strain of C. jejuni. Three different genes of interest, namely CmeB (synthesis of multidrug efflux system transporter proteins), NusG (transcription termination and anti-termination protein) and a putative transmembrane protein (involved in membrane protein function) were identified. The efficiency of the EZ::TN5 transposon mutagenesis approach was strain dependent and was unable to generate any mutants from most of the strains used. Conclusions: A diverse range of genes may be involved in biofilm formation by C. jejuni. The application of the EZ::TN5 system for construction of mutants in different Campylobacter strains is limited
    corecore