263 research outputs found

    Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the <it>in vivo </it>and <it>in vitro </it>effects of Kihi-to on memory, neurite growth and synapse reconstruction.</p> <p>Methods</p> <p>Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.</p> <p>Results</p> <p>Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Aβ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Aβ(25–35)-induced calcium entry.</p> <p>Conclusion</p> <p>In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.</p

    Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury

    Get PDF
    The Notch signaling pathway consists of several receptors and their ligands Delta and Jagged and is important for embryogenesis, cellular differentiation and proliferation. Activation of Notch receptors causes their cleavage yielding cytoplastic domains that translocate into the nucleus to induce target proteins such as the basic-loop-helix proteins Hes and Hey. Here we sought to clarify the significance of the Notch signaling pathway in acute kidney injury using a rat ischemia-reperfusion injury model and cultured NRK-52E cells. Analysis of the whole kidney after injury showed increased expression of Delta-1 and Hes-1 mRNA and protein along with processed Notch-2. Confocal microscopy, using specific antibodies, showed that Delta-1, cleaved Notch-2 and Hes-1 colocalized in the same segments of the injured renal proximal tubules. Recombinant Delta-1 significantly stimulated NRK-52E cell proliferation. Our study suggests that the Delta-1/Notch-2/Hes-1 signaling pathway may regulate the regeneration and proliferation of renal tubules during acute kidney injury

    Intrapleural hypotonic cisplatin treatment for malignant pleural effusion in 80 patients with non-small-cell lung cancer: a multi-institutional phase II trial

    Get PDF
    To assess the effect and toxicity of hypotonic cisplatin treatment (HPT) consisting of the intrapleural administration of cisplatin in distilled water for malignant pleural effusion in patients with non-small-cell lung cancer (NSCLC). Non-small-cell lung cancer patients with cytologically proven and previously untreated malignant pleural effusion were enrolled into this study. Firstly, the lung was fully re-expanded by a tube thoracostomy, and then 25 mg cisplatin in 500 ml of distilled water was instilled through a chest tube and then the tube was clamped. After 1 h, the tube was declamped and allowed to drain. The chest tube was removed when the pleural effusion volume decreased to 200 ml or less per day. A complete response (CR) was considered to occur when the pleural effusion disappeared. A partial response (PR) was determined to occur when the volume of pleural effusion remained under ¼ of hemithorax. The response at 4 weeks was evaluated by an extramural review. Out of 84 patients enrolled from February 1998 to August 2002, 80 patients were eligible and analysed in the present study. The toxicity of HPT was acceptable. Neither a haematological toxicity of any grade nor grade 4 nonhaematological toxicity was observed. Grade 3 nonhaematological toxicities were observed, including nausea (4%), vomiting (3%), pyothorax (1%) and dyspnoea (1%). The median time of drainage from HTP was 4 days. Twenty-seven (34%) and 39 (49%) patients achieved CR and PR, respectively, for an overall response rate of 83% (95% confidence interval, 74–91%). The median duration of the response was 206 days. The median survival time of all patients was 239 days. Hypotonic cisplatin treatment for malignant pleural effusion of NSCLC is therefore considered to be feasible and effective. A phase III study of HPT is thus warranted

    An agonist sensitive, quick and simple cell-based signaling assay for determination of ligands mimicking prostaglandin E2 or E1 activity through subtype EP1 receptor: Suitable for high throughput screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventionally the active ingredients in herbal extracts are separated into individual components, by fractionation, desalting, and followed by high-performance liquid chromatography (HPLC). In this study we have tried to directly screen water-soluble fractions of herbs with potential active ingredients before purification or extraction. We propose that the herbal extracts mimicking prostaglandin E<sub>1 </sub>(PGE<sub>1</sub>) and E<sub>2 </sub>(PGE<sub>2</sub>) can be identified in the water-soluble non-purified fraction. PGE<sub>1 </sub>is a potent anti-inflammatory molecule used for treating peripheral vascular diseases while PGE<sub>2 </sub>is an inflammatory molecule.</p> <p>Methods</p> <p>We used cell-based assays (CytoFluor multi-well plate reader and fluorescence microscopy) in which a calcium signal was generated by the recombinant EP<sub>1 </sub>receptor stably expressed in HEK293 cells (human embryonic kidney). PGE<sub>1 </sub>and PGE<sub>2 </sub>were tested for their ability to generate a calcium signal. Ninety-six water soluble fractions of Treasures of the east (single Chinese herb dietary supplements) were screened.</p> <p>Results</p> <p>After screening, the top ten stimulators were identified. The identified herbs were then desalted and the calcium fluorescent signal reconfirmed using fluorescence microscopy. Among these top ten agonists identified, seven stimulated the calcium signaling (1-40 μM concentration) using fluorescence microscopy.</p> <p>Conclusions</p> <p>Fluorescence microscopy and multi-well plate readers can be used as a target specific method for screening water soluble fractions with active ingredients at a very early stage, before purification. Our future work consists of purifying and separating the active ingredients and repeating fluorescence microscopy. Under ordinary circumstances we would have to purify the compounds first and then test all the extracts from 96 herbs. Conventionally, for screening natural product libraries, the procedure followed is the automated separation of all constituents into individual components using fractionation and high performance liquid chromatography. We, however, demonstrated that the active ingredients of the herbal extracts can be tested before purification using an agonist sensitive, quick and simple cell-based signaling assay for ligands mimicking the agonists, PGE<sub>1 </sub>and PGE<sub>2</sub>.</p

    Mechanical compression attenuates normal human bronchial epithelial wound healing

    Get PDF
    Background: Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods: Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1) unperturbed control cells, 2) single scrape wound only, 3) static compression (6 hours of 30 cmH(2)O), and 4) 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results: We found that mechanical compression and scrape injury increase TGF-beta 2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE(2) media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE(2), but not EGF. Conclusion: Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE(2) and a compromised cytoskeleton

    Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling

    Get PDF
    Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways.Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress.Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy

    GSI-I (Z-LLNle-CHO) inhibits γ-secretase and the proteosome to trigger cell death in precursor-B acute lymphoblastic leukemia

    Get PDF
    Gamma secretase inhibitors (GSIs) comprise a growing class of compounds that interfere with the membrane-bound Notch signaling protein and its downstream intra-nuclear transcriptional targets. As GSI-I (Z-LLNle-CHO) is also a derivative of a widely used proteosome inhibitor MG-132, we hypothesized that this compound might be active in precursor-B acute lymphoblastic leukemia (ALL) cell lines and patient samples. We found that GSI-I treatment of precursor-B ALL blasts induced apoptotic cell death within 18–24 h. With confirmation using RNA and protein analyses, GSI-I blocked nuclear accumulation of cleaved Notch1 and Notch2, and inhibited Notch targets Hey2 and Myc. Microarray analyses of 207 children with high-risk precursor-B ALL demonstrate that Notch pathway expression is a common feature of these neoplasms. However, microarray studies also implicated additional transcriptional targets in GSI-I-dependent cell death, including genes in the unfolded protein response, nuclear factor-κB and p53 pathways. Z-LLNle-CHO blocks both γ-secretase and proteosome activity, inducing more robust cell death in precursor-B ALL cells than either proteosome-selective or γ-secretase-selective inhibitors alone. Using Z-LLNle-CHO in a nonobese diabetes/severe combined immunodeficiency (NOD/SCID) precursor-B ALL xenograft model, we found that GSI-I alone delayed or prevented engraftment of B-lymphoblasts in 50% of the animals comprising the experimental group, suggesting that this compound is worthy of additional testing

    Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity

    Get PDF
    Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty
    • …
    corecore