1,040 research outputs found

    Влияние топологической структуры целлюлозы на процессы ацетилирования и нитрования

    Get PDF
    Эфиры целлюлозы активно используются при изготовлении новых полуфабрикатов, препаратов и материалов. Растительное сырье является основным источником для получения производных целлюлозы. Перспективным становится также производство целлюлозы путем микробиологического синтеза. Несмотря на одинаковые пути биосинтеза микрофибрилл, образцы целлюлозы растительного и бактериального происхождения отличаются по ряду структурных особенностей. Цель работы – оценка влияния топологической структуры целлюлозы растительного и бактериального происхождения на процессы ацетилирования и нитрования. В качестве образцов растительной целлюлозы использовали хлопковую и сульфатную целлюлозу. Бактериальную целлюлозу получали в лаборатории с применением смешанного сообщества микроорганизмов в статических условиях на синтетических глюкозных средах. Нитрование целлюлозы проводили смесью концентрированных H2SO4 и HNO3. Содержание азота в полученных образцах определяли ферросульфатным методом. ИК-спектры нитратов целлюлозы регистрировали на инфракрасном фурье-спектрометре Vertex-70 в диапазоне волновых чисел 4000…400 см–1. Ацетилирование целлюлозы осуществляли в среде сверхкритического диоксида углерода в системе сверхкритической флюидной экстракции SFE-5000, Thar Process. В ацетате целлюлозы титриметрически определяли содержание связанной уксусной кислоты, после чего рассчитывали степень замещения. Посредством электронной и атомно-силовой микроскопии визуализированы волокна растительной целлюлозы и фибриллы бактериальной целлюлозы. Выход нитрата из чистой хлопковой целлюлозы составил 160 %, т. е. степень замещения – 2,20. Нитрат целлюлозы, полученный из бактериальной целлюлозы в аналогичных условиях, имел степень замещения 1,96. Предложен новый метод прямого ацетилирования лиофильно высушенных препаратов бактериальной целлюлозы в среде сверхкритического диоксида углерода, что позволяет осуществлять процесс без кислотного катализатора и при пониженном расходе ацетилирующего агента. Ацетилирование растительной сульфатной целлюлозы показало степень замещения 2,40, для бактериальной целлюлозы – выход диацетилцеллюлозы с содержанием ацетильных групп 50 %, что соответствует степени замещения 2,10. Получение эфиров обусловлено как топохимическими особенностями микрофибрилл, так и кристалличностью материала. Для цитирования: Вашукова К.С., Терентьев К.Ю., Чухчин Д.Г., Ивахнов А.Д., Пошина Д.Н. Влияние топологической структуры целлюлозы на процессы ацетилирования и нитрования // Изв. вузов. Лесн. журн. 2023. № 6. С. 176–189. https://doi.org/10.37482/0536-1036-2023-6-176-18

    Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast

    Get PDF
    Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM) pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR) pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI) whereas no significant reduction was found in smaller chromosomes (III and VI). On the other hand, the absence of Rad17 (a critical component of the ATR pathway) lead to an increase in DSB formation (chromosomes VII and II were tested). We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation

    Three mechanisms of hydrogen-induced dislocation pinning in tungsten

    Get PDF
    The high-flux deuterium plasma impinging on a divertor degrades the long-termthermo-mechanical performance of its tungsten plasma-facing components. A prime actor inthis is hydrogen embrittlement, a degradation phenomenon that involves the interactions between hydrogen and dislocations, the primary carriers of plasticity. Measuring such nanoscaleinteractions is still very challenging, which limits our understanding. Here, we demonstrate anexperimental approach that combines thermal desorption spectroscopy (TDS) andnanoindentation, allowing to investigate the effect of hydrogen on the dislocation mobility in tungsten. Dislocation mobility was found to be reduced after deuterium injection, which ismanifested as a ‘pop-in’ in the indentation stress-strain curve, with an average activation stressfor dislocation mobility that was more than doubled. All experimental results can be confidentlyexplained, in conjunction with experimental and numerical literature findings, by the simultaneous activation of three mechanisms responsible for dislocation pinning: (i) hydrogentrapping at pre-existing dislocations, (ii) hydrogen-induced vacancies, and (iii) stabilization ofvacancies by hydrogen, contributing respectively 38%, 52%, and 34% to the extra activationstress. These mechanisms are considered to be essential for the proper understanding and modeling of hydrogen embrittlement in tungsten

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Surface modification of tungsten and tungsten-tantalum alloys exposed to high-flux deuterium plasma and its impact on deuterium retention

    Get PDF
    Samples of tungsten and tungsten-tantalum alloy (with 5 mass per cent of Ta) were exposed to high-flux deuterium plasma at different fluences. The surface modification was studied with scanning electron microscopy, and deuterium retention was measured by thermal desorption spectroscopy (TDS). In the high fluence range of similar to 3.5 x 10(26)-10(27)m(-2), multiple large-size blisters are formed on the W surface, while blisters on the W-Ta surface are considerably smaller in size and number. Deuterium retention in this fluence range was found to be systematically higher in W than in W-Ta. Correlation between the evolution of the blistering patterns and the TDS spectra as a function of fluence suggests that trapping in the sub-surface cavities associated with blisters is the predominant trapping mechanism in tungsten in the case of high fluence exposures. We attribute the lower retention in W-Ta under the investigated conditions to the weaker blistering.</p
    corecore