4,815 research outputs found
Recommended from our members
Trace chemical measurements from the northern midlatitude lowermost stratosphere in early spring: Distributions, correlations, and fate
In situ measurements of a large number of trace chemicals from the midlatitude (37-57°N) lower stratosphere were performed with the NASA DC-8 aircraft during March 1994. Deepest penetrations into the stratosphere (550 ppb O3, 279 ppb N2O, and 350 K potential temperature) corresponded to a region that has been defined as the "lowermost stratosphere" (LS) by Holton et al [1995]. Analysis of data shows that the mixing ratios of long-lived tracer species (e. g. CH4, HNO3, NOy, CFCs) are linearly correlated with those of O3 and N2O. A ΔNOy/ΔO3 of 0.0054 ppb/ppb and ΔNOy/ΔN2O of -0.081 ppb/ppb is in good agreement with other reported measurements from the DC-8. These slopes are however, somewhat steeper than those reported from the ER-2 airborne studies. We find that the reactive nitrogen budget in the LS is largely balanced with HNO3 accounting for 80% of NOy, and PAN and NOx together accounting for 5%. A number of oxygenated species (e. g. acetone, H2O2) were present and may provide an important in situ source of HOx in the LS. SO2 mixing ratios were found to increase in the stratosphere at a rate that was comparable to the decline in OCS levels. No evidence of particle formation could be observed. Ethane, propane, and acetylene mixing ratios declined rapidly in the LS with Cl atoms likely playing a key role in this process. A number of reactive hydrocarbons/halocarbons (e. g. C6H6, CH3I) were present at low but measurable concentrations
Recommended from our members
Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring
The late winter/early spring (February/March, 1994) measurements of Pacific Exploratory Mission-West (PEM-W) B have been analyzed to show latitudinal distributions (45°N to 10°S) of the mixing ratios of reactive nitrogen species (NO, peroxyacetylnitrate (PAN), HNO3, and NOy), ozone, and chemical tracers (CO, NMHCs, acetone, and C2Cl4) with a focus on the upper troposphere. Mixing ratios of all species are relatively low in the warm tropical and subtropical air south of the polar jetstream (≈28°N) but increase sharply with latitude in the cold polar air north of the jetstream. Noteworthy is the continuous increase in reservoir species (PAN and HNO3) and the simultaneous decrease in NOx toward the northern midlatitudes. The Harvard global three-dimensional model of tropospheric chemistry has been used to compare these observations with predictions. In the upper troposphere the magnitude and distribution of measured NOy and PAN as a function of latitude is well represented by this model, while NOx (measured NO + model calculated NO2) is underpredicted, especially in the tropics. Unlike several previous studies, where model-predicted HNO3 exceeded observations by as much as a factor of 10, the present data/model comparison is improved to within a factor of 2. The predicted upper tropospheric HNO3 is generally below or near measured values, and there is little need to invoke particle reactions as a means of removing or recycling HNO3. Comparison between measured NOy and the sum of its three main constituents (PAN + NOx + HNO3) on average show a small mean shortfall (<15%). This shortfall could be attributed to the presence of known but unmeasured species (e.g., peroxynitric acid and alkyl nitrates) as well as to instrument errors. Copyright 1998 by the American Geophysical Union
Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia
As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%
Recommended from our members
Bromoform and dibromomethane measurements in the seacoast region of New Hampshire, 2002-2004
Atmospheric measurements of bromoform (CHBr3) and dibromomethane (CH2Br2) were conducted at two sites, Thompson Farm (TF) in Durham, New Hampshire (summer 2002-2004), and Appledore Island (AI), Maine (summer 2004). Elevated mixing ratios of CHBr3 were frequently observed at both sites, with maxima of 37.9 parts per trillion by volume (pptv) and 47.4 pptv for TF and AI, respectively. Average mixing ratios of CHBr3 and CH2Br2 at TF for all three summers ranged from 5.3-6.3 and 1.3-2.3 pptv, respectively. The average mixing ratios of both gases were higher at AI during 2004, consistent with AI's proximity to sources of these bromocarbons. Strong negative vertical gradients in the atmosphere corroborated local sources of these gases at the surface. At AI, CHBr3 and CH2Br2 mixing ratios increased with wind speed via sea-to-air transfer from supersaturated coastal waters. Large enhancements of CHBr3 and CH2Br2 were observed at both sites from 10 to 14 August 2004, coinciding with the passage of Tropical Storm Bonnie. During this period, fluxes of CHBr3 and CH2Br3 were 52.4 ± 21.0 and 9.1 ± 3.1 nmol m-2 h-1, respectively. The average fluxes of CHBr3 and CH2Br2 during nonevent periods were 18.9 ± 12.3 and 2.6 ± 1.9 nmol m-2 h-1, respectively. Additionally, CHBr3 and CH2Br2 were used as marine tracers in case studies to (1) evaluate the impact of tropical storms on emissions and distributions of marine-derived gases in the coastal region and (2) characterize the transport of air masses during pollution episodes in the northeastern United States. Copyright 2008 by the American Geophysical Union
Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools
Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and
morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant
software, a commercially available video bioinformatics tool, can be used to extract quantitative data on:
(1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and
(4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and
colonies. Time-lapse experiments in which different cell types were subjected to various chemical
exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem
cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels).
Colony and single cell migration were studied by measuring total displacement (distance between the
starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production,
cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with
various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural
stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected
daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant
software can be used to evaluate biological processes in living cells, and the protocols developed in
this project can be applied to basic research and toxicological studies, or to monitor quality control in
culture facilities
Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
This is the final version of the article. Available from the publisher via the DOI in this record.The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.Funding: This work was supported by National Key Basic Research and Development Program of China (2012CB114002), by Program for Changjiang Scholars
and Innovative Research Team in University (IRT0943), by the Natural Science Foundation of China (Grant Nos. 30970129 and 31071648) and the Doctoral Fund of
Ministry of Education of China (20100101110097) to ZW
Evaluating regional emission estimates using the TRACE-P observations
Measurements obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment are used in conjunction with regional modeling analysis to evaluate emission estimates for Asia. A comparison between the modeled values and the observations is one method to evaluate emissions. Based on such analysis it is concluded that the inventory performs well for the light alkanes, CO, ethyne, SO2, and NOₓ. Furthermore, based on model skill in predicting important photochemical species such as O₃, HCHO, OH, HO₂, and HNO₃, it is found that the emissions inventories are of sufficient quality to support preliminary studies of ozone production. These are important finding in light of the fact that emission estimates for many species (such as speciated NMHCs and BC) for this region have only recently been estimated and are highly uncertain. Using a classification of the measurements built upon trajectory analysis, we compare observed species distributions and ratios of species to those modeled and to ratios estimated from the emissions inventory. It is shown that this technique can reconstruct a spatial distribution of propane/benzene that looks remarkably similar to that calculated from the emissions inventory. A major discrepancy between modeled and observed behavior is found in the Yellow Sea, where modeled values are systematically underpredicted. The integrated analysis suggests that this may be related to an underestimation of emissions from the domestic sector. The emission is further tested by comparing observed and measured species ratios in identified megacity plumes. Many of the model derived ratios (e.g., BC/CO, SOₓ/C₂H₂) fall within ∼25% of those observed and all fall outside of a factor of 2.5. (See Article file for details of the abstract.)Department of Civil and Environmental EngineeringAuthor name used in this publication: Wang, T
Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B
Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
Multi-year (2004–2008) record of nonmethane hydrocarbons and halocarbons in New England: seasonal variations and regional sources
Multi-year time series records of C<sub>2</sub>-C<sub>6</sub> alkanes, C<sub>2</sub>-C<sub>4</sub> alkenes, ethyne, isoprene, C<sub>6</sub>-C<sub>8</sub> aromatics, trichloroethene (C<sub>2</sub>HCl<sub>3</sub>), and tetrachloroethene (C<sub>2</sub>Cl<sub>4</sub>) from canister samples collected during January 2004–February 2008 at the University of New Hampshire (UNH) AIRMAP Observatory at Thompson Farm (TF) in Durham, NH are presented. The objectives of this work are to identify the sources of nonmethane hydrocarbons (NMHCs) and halocarbons observed at TF, characterize the seasonal and interannual variability in ambient mixing ratios and sources, and estimate regional emission rates of NMHCs. Analysis of correlations and comparisons with emission ratios indicated that a ubiquitous and persistent mix of emissions from several anthropogenic sources is observed throughout the entire year. The highest C<sub>2</sub>-C<sub>8</sub> anthropogenic NMHC mixing ratios were observed in mid to late winter. Following the springtime minimums, the C<sub>3</sub>-C<sub>6</sub> alkanes, C<sub>7</sub>-C<sub>8</sub> aromatics, and C<sub>2</sub>HCl<sub>3</sub> increased in early to mid summer, presumably reflecting enhanced evaporative emissions. Mixing ratios of C<sub>2</sub>Cl<sub>4</sub> and C<sub>2</sub>HCl<sub>3</sub> decreased by 0.7&plusmn;0.2 and 0.3&plusmn;0.05 pptv/year, respectively, which is indicative of reduced usage and emissions of these halogenated solvents. Emission rates of C<sub>3</sub>-C<sub>8</sub> NMHCs were estimated to be 10<sup>9</sup> to 10<sup>10</sup> molecules cm<sup>−2</sup> s<sup>−1</sup> in winter 2006. The emission rates extrapolated to the state of New Hampshire and New England were ~2–60 Mg/day and ~12–430 Mg/day, respectively. Emission rates of benzene, toluene, ethylbenzene, xylenes, and ethyne in the 2002 and 2005 EPA National Emissions Inventories were within &plusmn;50% of the TF emission rates
Recommended from our members
Export of anthropogenic reactive nitrogen and sulfur compounds from the East Asia region in spring
- …
