520 research outputs found

    Differential requirements of MyD88 and TRIF pathways in TLR4-mediated immune responses in murine B cells

    Get PDF
    LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a variety ofimmune responses in B cells. TLR4 has two main signaling pathways, MyD88 and Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon- (TRIF) pathways, but relatively few studies have examinedthese pathways in B cells. In this study, we investigated MyD88- or TRIF-dependent LPS responses inB cells by utilizing their knockout mice. Compared with wild-type (WT) B cells, MyD88−/−B cells weremarkedly impaired in up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF−/−Bcells were also impaired in these responses compared with WT B cells, but showed better responses thanMyD88−/−B cells. Regarding class switch recombination (CSR) elicited by lipid A plus IL-4, MyD88−/−B cells showed similar patterns of CSR to WT B cells. However, TRIF−/−B cells showed the impaired inthe CSR. Compared with WT and MyD88−/−B cells, TRIF−/−B cells exhibited reduced cell division, fewerIgG1+cells per division, and decreased activation-induced cytidine deaminase (Aicda) mRNA expressionin response to lipid A plus IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization wasimpaired in TRIF−/−mice, while MyD88−/−mice exhibited increased IgG1 production. Thus, MyD88 andTRIF pathways differently regulate TLR4-induced immune responses in B cells

    Drastic Change of Magnetic Phase Diagram in Doped Quantum Antiferromagnet TlCu1−x_{1-x}Mgx_xCl3_3

    Full text link
    TlCuCl3_3 is a coupled spin dimer system, which has a singlet ground state with an excitation gap of Δ/gμB\Delta/g\mu_{\mathrm B} = 5.5 T. TlCu1−x_{1-x}Mgx_xCl3_3 doped with nonmagnetic Mg2+^{2+} ions undergoes impurity-induced magnetic ordering. Because triplet excitation with a finite gap still remains, this doped system can also undergo magnetic-field-induced magnetic ordering. By specific heat measurements and neutron scattering experiments under a magnetic field, we investigated the phase diagram in TlCu1−x_{1-x}Mgx_xCl3_3 with x∼0.01x\sim 0.01, and found that impurity- and field-induced ordered phases are the same. The gapped spin liquid state observed in pure TlCuCl3_3 is completely wiped out by the small amount of doping.Comment: 9 pages, 5 figures, jpsj2 class file, to be published in J. Phy. Soc. Jpn. Vol.75 No.3 (2006); layout changed, unrelated figure remove

    Pressure-Induced Magnetic Quantum Phase Transitions from Gapped Ground State in TlCuCl3

    Full text link
    Magnetization maesurements under hydrostatic pressure were performed on an S=1/2 coupled spin system TlCuCl3 with a gapped ground state under magnetic field H parallel to the [2,0,1] direction. With increasing applied pressure P, the gap decreases and closes completely at Pc=0.42 kbar. For P>Pc, TlCuCl3 undergoes antiferromagnetic ordering. A spin-flop transition was observed at Hsf=0.7T. The spin-flop field is approximately independent of pressure, although the sublattice magnetization increases with pressure. The gap and Neel temperature are presented as function is attributed to to the relative enhancement of the interdimer exchange interactions compared with the intradimer exchange interaction.Comment: 4pages,3figures To be published in J. Phys. Soc. Jpn. Vol.73 No.1

    Few-electron molecular states and their transitions in a single InAs quantum dot molecule

    Full text link
    We study electronic configurations in a single pair of vertically coupled self-assembled InAs quantum dots, holding just a few electrons. By comparing the experimental data of non-linear single-electron transport spectra in a magnetic field with many-body calculations, we identify the spin and orbital configurations to confirm the formation of molecular states by filling both the quantum mechanically coupled symmetric and anti-symmetric states. Filling of the anti-symmetric states is less favored with increasing magnetic field, and this leads to various magnetic field induced transitions in the molecular states.Comment: 14 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

    Get PDF
    We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the number of DNA masses per petal at least doubled. This indicated chromatin fragmentation, either inside or outside the nucleus. Staining with the cationic lipophilic fluoroprobe DiOC6 indicated that each DNA mass had an external membrane. Fluorescence microscopy of the nuclei and DNA masses revealed an initial decrease in diameter together with chromatin condensation. The diameters of these condensed nuclei were about 70% of original. Two populations of nuclear diameter, one with an average diameter about half of the other, were observed at initial stages of nuclear fragmentation. The diameter of the DNA masses then gradually decreased further. The smallest observed DNA masses had a diameter less than 10% of that of the original nucleus. Cycloheximide treatment arrested the cytometrically determined changes in DNA fluorescence, indicating protein synthesis requirement. Ethylene inhibitors (AVG and 1-MCP) had no effect on the cytometrically determined DNA changes, suggesting that these processes are not controlled by endogenous ethylene

    Impurity-Induced Antiferromagnetic Ordering in the Spin Gap System TlCuCl_3

    Full text link
    The magnetization measurements have been performed on the doped spin gap system TlCu_{1-x}Mg_xCl_3 with x <= 0.025. The parent compound TlCuCl_3 is a three-dimensional coupled spin dimer system with the excitation gap Delta/k_B = 7.7 K. The impurity-induced antiferromagnetic ordering was clearly observed. The easy axis lies in the (0,1,0) plane. It was found that the transition temperature increases with increasing Mg^{2+} concentration x, while the spin-flop transition field is almost independent of x. The magnetization curve suggests that the impurity-induced antiferromagnetic ordering coexists with the spin gap for x <= 0.017.Comment: 5 pages, 6 figures, revtex styl

    Magnetization plateaus in weakly coupled dimer spin system

    Full text link
    I study a spin system consisting of strongly coupled dimers which are in turn weakly coupled in a plane by zigzag interactions. The model can be viewed as the strong-coupling limit of a two-dimensional zigzag chain structure typical, e.g., for the (ac)(ac)-planes of KCuCl_3. It is shown that the magnetization curve in this model has plateaus at 1/3 and 2/3 of the saturation magnetization, and an additional plateau at 1/2 can appear in a certain range of the model parameters; the critical fields are calculated perturbatively. It is argued that for the three-dimensional lattice structure of the KCuCl_3 family the plateaus at 1/4 and 3/4 of the saturation can be favored in a similar way, which might be relevant to the recent experiments on NH_4CuCl_3 by Shiramura et al., J. Phys. Soc. Jpn. {\bf 67}, 1548 (1998).Comment: serious changes in Sect. II,III, final version to appear in PR

    Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering measurements have been performed under the hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl3_3. Below the ordering temperature TN=16.9T_{\rm N}=16.9 K for the hydrostatic pressure P=1.48P=1.48 GPa, magnetic Bragg reflections were observed at the reciprocal lattice points {\mib Q}=(h, 0, l) with integer hh and odd ll, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap closes due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P=1.48P=1.48 GPa was determined.Comment: 4 pages, 3 figures, 3 eps files, jpsj2.cls styl
    • …
    corecore