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Abbreviations 

Aicda: activation-indeced cytidine deaminase 

CSR: class switch recombination 

IL-4 receptor: IL-4R 

MD-2: myeloid differentiation protein 2 

MPLA: monophosphoryl lipid A 

RP105: radioprotective 105 

TI: T cell -independent 

TIR: Toll/IL-1R 

TNP: trinitrophenyl 

TRAM: TRIF-related adaptor molecule 

TRIF: TIR-domain-containing adaptor-inducing interferon-β 

WT: wild-type
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Abstract 

LPS stimulates the TLR4/Myeloid differentiation protein-2 (MD-2) complex and promotes a 

variety of immune responses in B cells. TLR4 has two main signaling pathways, MyD88 and 

Toll/IL-1R (TIR)-domain-containing adaptor-inducing interferon-β (TRIF) pathways, but 

relatively few studies have examined these pathways in B cells. In this study, we investigated 

MyD88- or TRIF-dependent LPS responses in B cells by utilizing their knockout mice. 

Compared with wild-type (WT) B cells, MyD88-/- B cells were markedly impaired in 

up-regulation of CD86 and proliferation induced by lipid A moiety of LPS. TRIF-/- B cells 

were also impaired in these responses compared with WT B cells, but showed better 

responses than MyD88-/- B cells. Regarding class switch recombination (CSR) elicited by 

lipid A plus IL-4, MyD88-/- B cells showed similar patterns of CSR to WT B cells. However, 

TRIF-/- B cells showed the impaired in the CSR. Compared with WT and MyD88-/- B cells, 

TRIF-/- B cells exhibited reduced cell division, fewer IgG1+ cells per division, and decreased 

activation-induced cytidine deaminase (Aicda) mRNA expression in response to lipid A plus 

IL-4. Finally, IgG1 production to trinitrophenyl (TNP)-LPS immunization was impaired in 

TRIF-/- mice, while MyD88-/- mice exhibited increased IgG1 production. Thus, MyD88 and 

TRIF pathways differently regulate TLR4-induced immune responses in B cells. 
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1. Introduction 

B cells play an essential role in the development of antibody responses to pathogens [1]. 

These are regulated by signals delivered via several mediators including BCR and TLR family 

proteins. The exposure of mouse B cells to TLR ligands, such as LPS, promotes a 

combination of responses in B cells, including up-regulation of co-stimulatory molecules, cell 

proliferation, and class switch recombination (CSR) [2]. In the process of CSR, B cells 

integrate signals via TLRs and cytokine receptors. For instance, IL-4 prominently induces 

CSR primarily to IgG1 and IgE in the presence of TLR ligands, including LPS, CpG, 

8-mercaptoguanosine, loxoribine or poly(I:C) [3-6]. TGF-β is a critical cytokine for CSR to 

IgA [7]. By contrast, CSR to IgG3 is induced by LPS stimulation alone [8]. 

    To deliver a signal, TLRs require a variety of Toll/IL-1R (TIR) domain containing 

adaptor molecules including MyD88 and TIR-domain-containing adaptor-inducing 

interferon-β (TRIF). MyD88 is recruited by TLR4 following LPS ligation and has an 

important role for the early activation of NF-κB to govern the induction of pro-inflammatory 

cytokines [9]. On the other hand, TRIF is recruited by TRIF-related adaptor molecule 

(TRAM) and has a critical role for the late activation of NF-κB as well as the activation of 

IRF3, which is important for the induction of IFN-inducible genes [10]. However, analyses of 

these pathways have been performed in mainly macrophages and dendritic cells. TLR4 was 

the first TLR to be identified and its extracellular domain forms a heterodimeric complex with 

the secreted myeloid differentiation protein-2 (MD-2) [11,12]. Neither TLR4-/- or MD-2-/- 

mice respond to LPS, so the TLR4/MD-2 complex is essential for LPS responses [13,14]. 

TLR4 activates both MyD88 and TRIF pathways, but little is known how B cells use these 

signaling pathways differently in response to LPS. 

    Several in vivo studies have suggested a role for MyD88 in humoral immunity. MyD88 

pathway in B cells is required for IgM and IgG2c production in response to adjuvants, which 
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include TLR ligands [15]. However, other studies revealed that MyD88-deficient B cells can 

promote normal primary antibody production after immunization with certain adjuvants [16]. 

In addition, B cell-intrinsic TLR-MyD88 pathway has been implicated in the production of 

anti-DNA antibodies in a mouse SLE model [17]. Therefore, MyD88 pathway contributes to 

antibody responses depending on the type of immune challenge and disease models. However, 

much less is known about roles of TRIF in antibody responses. A recent paper has reported 

that TRIF is essential for LPS plus IL-4-driven CSR to IgE by inducing sustained NF-κB 

activation in B cells [18]. 

    We have now utilized gene-targeted mice to explore the importance of MyD88- or 

TRIF-dependent LPS responses in B cells. We found that MyD88 and TRIF pathways 

differently regulate TLR4 signals in spleen B cells. MyD88 pathway is sufficient for a variety 

of B cell responses induced by TLR4 stimulation alone. TRIF signaling is required but not 

sufficient for these responses. Intriguingly, TRIF pathway plays an important role in 

functional coupling between TLR4 signaling and IL-4 receptor (IL-4R) signaling to induce 

cell division, Aicda mRNA expression, and CSR. 
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2. Materials and Methods 

2.1 Mice 

C57BL/6 mice were purchased from Japan SLC (Hamamatsu, Japan) and were used at 8 to 10 

weeks of age. C57BL/6, TLR4-/- [13], MyD88-/- [19] and TRIF-/- [10] mice were maintained in 

microisolator cages under specific pathogen-free conditions, and maintained in the animal 

facility of University of Toyama. The genetic backgrounds of these knockout mice were 

C57BL/6. All experiments were performed according to the guidelines for the care and 

treatment of experimental animals at University of Toyama (Approved No. S-2010MED-26). 

 

2.2 Reagents 

Lipid A from Salmonella minnesota was purchased from Sigma-Aldrich (St. Louis, MO). 

CpG-B was purchased from Hokkaido System Science (Japan). Pam3CSK4 and poly(I:C) 

were purchased from InvivoGen (San Diago, CA). Recombinant mouse IL-4, IL-5, TGF-β, 

and purified anti-mouse CD40 mAb were purchased from R & D Systems (Minneapolis, MN). 

CFSE was purchased from Molecular Probes (Carlsbad, CA). APC-conjugated streptavidin 

was purchased from BD Bioscience (San Diago, CA). Trinitrophenyl (TNP)-LPS and 

TNP-BSA were purchased from Biosearch Technologies (Petaluma, CA). Purified anti-mouse 

RP105 mAb (clone RP/14) [20] was purchased from eBioscience (San Diago, CA). Purified 

anti-mouse TLR4 mAb (clone UT12) were prepared as previously described [21]. 

 

2.3 Flow Cytometry 

The following antibodies for flow cytometry were purchased from BD Bioscience: 

biotinylated anti-CD43 (clone S7), FITC- or APC-conjugated anti-CD45R/B220 (clone 

RA3-6B2), biotinylayed anti-IL-4Rα (clone mIL4R-M1), Alexa647-conjugated anti-STAT6 

(pY641) (clone J71-773.58.11), PE-conjugated anti-mouse IgG1 (clone A85-1), 
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FITC-conjugated anti-mouse IgA (clone C10-3), biotinylated anti-mouse IgG3 (clone R40-82). 

PE-conjugated anti-CD86 (clone GL1) was purchased from eBioscience. 

    The cells (1 × 105) were incubated with purified anti-mouse FcγR (clone 2.4G2) to block 

binding of the labeled Abs to FcγR. After 15 min, the cells were stained with predetermined 

optimal concentrations of the respective Abs. 7-amino-actinomycin D (7-AAD) (BD 

Bioscience) was used to exclude dead cells. Flow cytometry analyses were conducted on a 

FACSCanto (Becton Dickinson & Co., Mountain View, CA), and the data were analyzed with 

FlowJo software (Treestar, San Carlos, CA). 

 

2.4 B cell preparation and proliferation in vitro 

Spleen cells were prepared from 8 to 10-wk old mice, and their B cells were isolated by 

magnetic depletion of cells other type with biotinylated anti-CD43 and streptavidin magnetic 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). The purified B cells contained 

>95% B220+ cells, as assessed by flow cytometry using the FACSCanto. For 3H-Thymidine 

uptake, B cells were cultured as described previously [22,23]. 

    For the measurement of cell division, B cells were stained with CFSE. Cells were 

suspended in RPMI 1640 medium (Life Technologies, Grand Island, NY) containing 1 μM 

CFSE, and incubated at 37 °C for 10 min. Cells were washed with 8% FCS-RPMI, and 

cultured with their respective stimuli at a density of 1 × 106 cells/ml. The number of cell 

division was analyzed by FACSCanto. 

 

2.5 ELISA 

Purified B cells (1 x 105 per 200 µl per well) were cultured in a 96-well plate in RPMI 1640 

medium supplemented with 10% heat-inactivated FCS, 50 µM 2-ME, penicillin (50 U/ml), 

and streptomycin (50 µg/ml). Stimulants were added at the same time the cells were plated. 
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Each culture was set-up in triplicate. The Ig concentration in the culture supernatants was 

titrated by ELISA. Briefly, ELISA plates were coated with unlabeled goat anti-mouse Ig 

(H+L) (Southern Biotech, Birmingham, AL). Igs in the B cells were detected with 

HRP-conjugated isotype-specific anti-mouse Igs (Southern Biotech). HRP-conjugated 

anti-mouse Ig was detected with o-phenylenediamine (Sigma-Aldrich) and ODs of 490 nm 

were determined with a Micro Plate Reader (Bio-Rad, Hercules, CA). 

 

2.6 Preparation of RNA and cDNA 

Total RNA was isolated with RNeasy mini kit (QIAGEN, Hilden, Germany) following the 

manufacture’s instructions. RNA was reverse transcribed with a TaqMan Reverse 

Transcription Reagents (Applied Biosystems, Carlsbad, CA) following the manufacture’s 

instructions. 

 

2.7 Real-time quantitative PCR 

Real-time quantitative PCR (RT-qPCR) was performed with a TaqMan Gene Expression 

Master Mix (Applied Biosystems) and analyzed with a Mx3000P (Agilent Technologies, 

Santa Clara, CA) following the manufacture’s instructions. Relative transcript abundance was 

normalized for that of Hprt mRNA. The information for primers used for real-time PCR is 

listed in Supplementary Table 1. 

 

2.8 Determination of serum immunoglobulins and Ab responses in vivo 

C57BL/6, TLR4-/-, MyD88-/- and TRIF-/- mice were immunized intraperitoneally with 

TNP-LPS (20 µg/mouse) in phosphate-buffered saline. The serum concentration of 

TNP-specific Abs at different time point was measured by ELISA. ELISA was performed by 

coating plastic plates with TNP-BSA, and serial dilutions were applied onto the plate. Bound 
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antibodies were revealed by goat Abs specific each Ig isotype. To determine serum Ig titers, 

goat anti-mouse Ig (H+L) (Southern Biotech) was coated instead of TNP-BSA. 

 

2.9 Statistical analysis 

Statistical significance was evaluated by one-way ANOVA followed by post-hoc Tukey test. 
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3. Results 

3.1 CD86 up-regulation and cell proliferation induced by lipid A alone are largely 

dependent on MyD88 

We first investigated B cell responses to lipid A or other TLR ligands in WT, TLR4-/-, 

MyD88-/- and TRIF-/- mice in vitro. TLR4-/- B cells were defective in lipid A-induced CD86 

up-regulation and proliferation (Fig. 1A and 1B). These responses were impaired in MyD88-/- 

and TRIF-/- B cells. TRIF-/- B cells showed better response than MyD88-/- B cells (Fig. 1A and 

B). In addition, we utilized agonistic anti-TLR4 mAb [21]. The mAb induced massive 

proliferation of WT B cells and gave similar results to the lipid A stimulation in MyD88-/- or 

TRIF-/- B cells (Supplementary Fig. 1). MyD88-/- or TRIF-/- B cells as well as WT B cells 

promoted spleen B cell proliferation in response to another TLR family protein 

radioprotective 105 (RP105) stimulation [20,23]. 

    TLR2 and TLR9 trigger only MyD88 pathway. TLR2 ligand Pam3CSK4 or TLR9 ligand 

CpG-B induced CD86 up-regulation and proliferation in WT, TLR4-/- and TRIF-/- B cells, 

while MyD88-/- B cells showed defective responses to these stimuli (Fig. 1A and 1B). The 

TLR3 ligand poly(I:C)-induced CD86 up-regulation was markedly attenuated in TRIF-/- B 

cells. We recorded no significant proliferative responses in poly(I:C)-stimulated WT B cells 

(data not shown). Anti-CD40-induced CD86-upregulation and proliferation were comparable 

in B cells from all strains of mice. These results suggest that B cell responses induced by 

TLR4 stimulation alone are largely dependent on MyD88 and partly dependent on TRIF. 

 

3.2 TRIF-/- B cells are attenuated in CSRs to IgG1 and IgE elicited by lipid A plus IL-4 

Our experiments focused on potential functions for MyD88 and TRIF pathways on CSR. 

Anti-CD40 plus IL-4-mediated IgG1 induction in MyD88-/- or TRIF-/- B cells was similar to 

that in WT B cells (Fig. 2A). Lipid A plus IL-4 stimulation increased the percentages of IgG1+ 



 

  11 

cells in WT B cells. Although the percentages of IgG1+ cells in MyD88-/- B cells were higher 

than those in WT B cells, the induction of IgG1+ cells was impaired in TRIF-/- B cells. 

MyD88-/- B cells were defective in the induction of IgG1+ cells induced by CpG-B plus IL-4 

or Pam3CSK4 plus IL-4. We also confirmed the above findings by measuring IgG1 

production (data not shown). B cells from all strains of mice produced comparable IgE by 

anti-CD40 plus IL-4 (Fig. 2B). Lipid A plus IL-4 stimulation induced IgE production in WT B 

cells. However, the highest concentration of lipid A (1 µg/ml) decreased IgE production in 

WT B cells compared with 0.1 µg/ml of lipid A. This may be due to low cell proliferation and 

decreased percentage of live cells (7-AAD-negative cells) in WT B cells stimulated with 1 

µg/ml of lipid A compared with those stimulated with 0.1 µg/ml of lipid A (Fig. 1B and data 

not shown). As reported [18,24], IgE production was not observed in culture of TLR4-/- or 

TRIF-/- B cells in response to lipid A plus IL-4. Although MyD88-/- B cells showed impaired 

IgE production at lower concentration of lipid A, they produced significant IgE at a higher 

concentration compared with WT B cells. These results imply that TLR4 plus IL-4-induced 

CSR to IgG1 and IgE is largely dependent on TRIF. 

 

3.3 TLR4 plus IL-4-elicited CSR to IgA is impaired in TRIF-/- B cells  

We then asked whether TLR4 requires TRIF signaling to switch to other immunoglobulins 

(Igs) in B cells. Stimulation of WT B cells with lipid A plus TGF-β induced IgA+ cells and 

IgA production, but TLR4-/- or MyD88-/- B cells did not show these responses (Fig. 3A and 3B, 

data not shown). TRIF-/- B cells showed slightly impaired these responses compared with WT 

B cells. Although IL-5 stimulation increased the percentages of IgA+ on lipid A plus 

TGF-β-stimulated B cells from all strains of mice (Fig. 3A), MyD88-/- B cells showed 

defective IgA production even with the addition of IL-5 to lipid A plus TGF-β stimulation 

(Fig. 3B). Further addition of IL-4 to lipid A plus TGF-β plus IL-5-stimulated WT B cells 
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increased the percentage of IgA+ cells and IgA production (Fig. 3A and 3B). In MyD88-/- B 

cells, IgA production was dramatically augmented by addition of IL-4 to lipid A plus TGF-β 

plus IL-5 stimulation (Fig. 3B). In contrast, these effects of IL-4 in TRIF-/- B cells were lower 

than those of WT B cells. 

    Lipid A stimulation alone increased the percentage of IgG3+ and IgG3 production in WT 

B cells (Fig. 3C and 3D). These responses were markedly impaired in MyD88-/- B cells as 

well as TLR4-/- B cells. TRIF-/- B cells also impaired these responses, but were better 

responder than MyD88-/- B cells. As observed in Fig. 2B, the highest concentration of lipid A 

(1 µg/ml) decreased IgG3 production in WT B cells because of low cell proliferation and 

decreased percentage of live cells (Fig. 1B and data not shown). These results suggest that 

TLR4 plus IL-4-mediated CSR not only to IgG1 and IgE but also to IgA are mediated by 

TRIF signaling. 

 

3.4 TRIF is not directly involved in the regulation of IL-4Rα expression and IL-4R 

signaling 

The above findings beg a question of whether TRIF protein is directly involved in IL-4R 

signaling. We then examined IL-4Rα expression and IL-4-mediated events in WT, MyD88-/- 

and TRIF-/- B cells. The levels of IL-4Rα expression on un-stimulated, lipid A- or 

anti-CD40-stimulated MyD88-/- and TRIF-/- B cells were comparable to those on WT B cells 

(Fig. 4A). CD86 was up-regulated when WT B cells were stimulated with IL-4 (Fig. 4B). 

MyD88-/- or TRIF-/- B cells also showed up-regulation of CD86 in response to IL-4. 

Furthermore, phosphorylated STAT6 (P-STAT6) in IL-4- or lipid A plus IL-4-stimulated 

MyD88-/- or TRIF-/- B cells was comparable to WT B cells (Fig. 4C). Thus, neither TRIF nor 

MyD88 is involved in the regulation of IL-4Rα expression and IL-4R signaling. 
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3.5 TRIF-/- B cells are markedly attenuated in lipid A plus IL-4-induced cell division 

A number of previous studies have delineated that the appearance of class-switched cells 

occurs in a cell division-linked manner that does not depend on the time in culture or in cycle 

[25,26]. To clarify the reason for decreased number of class-switched cells in lipid A plus 

IL-4-treated TRIF-/- B cells, cell division of CFSE-labeled cells was determined. Lipid 

A-induced cell division was impaired in MyD88-/- and TRIF-/- B cells (Fig. 5A). The 

impairment was more apparent in MyD88-/- B cells than TRIF-/- B cells. The addition of IL-4 

slightly increased percentage of divided cells in lipid A-stimulated WT B cells. Intriguingly, 

the percentage of divided cells in lipid A-stimulated MyD88-/- B cells was dramatically 

increased by 2-fold by addition of IL-4. In contrast, the addition of IL-4 decreased percentage 

of divided cells in lipid A-stimulated TRIF-/- B cells. B cells from all strains of mice 

responded similarly to anti-CD40 plus IL-4 leading to the cell division. 

    We also determined the percentage of divided cells per generation. Lipid A stimulation 

alone produced large number of divided cells in the >7th division of WT and TRIF-/- B cells 

(~50%), whereas cell division of MyD88-/- B cells was markedly impaired by this stimulation 

(Fig. 5B, left). The addition of IL-4 decreased the percentage of the >7th divided cells in lipid 

A-stimulated WT B cells (~20%), but increased the percentages of the 2nd to 6th divided cells 

in WT and MyD88-/- B cells (Fig. 5B, middle). Lipid A plus IL-4-stimulated TRIF-/- B cells 

had lower percentages of the 3rd to 6th division and more non-divided cells (~45%) than WT 

and MyD88-/- B cells. The percentage of >7th divided cells in lipid A plus IL-4-stimulated 

TRIF-/- B cells were comparable to those of WT and MyD88-/- B cells. Similar percentages of 

divided cells per generation were seen in WT, MyD88-/- and TRIF-/- B cells in response to 

anti-CD40 plus IL-4 (Fig. 5B, right). Thus, TRIF is important for TLR4 plus IL-4-induced B 

cell division. 
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3.6 TRIF-/- B cells are markedly attenuated in lipid A plus IL-4-induced rate of IgG1+ 

cells per generation and Aicda mRNA expression 

The impairment of CSR in TLR4 plus IL-4-stimulated TRIF-/- B cells may be due to a result 

of altered cell division/differentiation, but may be due to suppression of a CSR machinery 

regulated by TRIF. Although TRIF-/- B cells weakly but substantially divided in response to 

lipid A plus IL-4, the population of IgG1+ cells with division was remarkably reduced (Fig. 

6A). Substantial numbers of IgG1+ cells were not apparent until the 3rd division in lipid A plus 

IL-4-stimulated WT B cells and did not occur to a substantial degree in those from MyD88-/- 

or TRIF-/- B cells (Fig. 6B, upper). MyD88-/- B cells produced substantial numbers of IgG1+ 

cells as early as 4th division and steadily increased with each subsequent division in response 

to lipid A plus IL-4. In contrast, TRIF-/- B cells treated with lipid A plus IL-4 had fewer IgG1+ 

cells (10~15%) in the 4th to 7th division than WT or MyD88-/- B cells. In contrast, B cells from 

all strains of mice similarly produced IgG1+ cells in each division in response to anti-CD40 

plus IL-4 (Fig. 6B, lower). These results suggest that TRIF signaling may be a requisite for 

the initiation of the CSR program in the TLR4 plus IL-4-stimulated B cells. 

    We then considered whether TRIF is required for lipid A plus IL-4-induced 

activation-induced cytidine deaminase (Aicda) mRNA expression. Lipid A stimulation alone 

markedly induced Aicda mRNA expression in WT, but this was absent in MyD88-/- B cells 

(Fig. 6C). TRIF-/- B cells were impaired in this response compared with WT B cells. Although 

the addition of IL-4 slightly increased the level of Aicda mRNA expression in lipid 

A-stimulated WT B cells in 3 days cultures, Aicda mRNA expression was dramatically 

augmented by IL-4 stimulation in lipid A-stimulated MyD88-/- B cells in 2 or 3 days cultures. 

In contrast, this effect of IL-4 was not observed in TRIF-/- B cells. 

 

3.7 TRIF-/- mice are impaired in IgG1 production to TNP-LPS, while MyD88-/- mice 
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show increased its production 

We examined serum Ig levels in WT mice and mice lacking TLR4, MyD88, or TRIF. As 

reported previously, MyD88-/- mice had higher IgG1 levels than WT mice (Fig. 7A) [22,24]. 

This enhancement seems to be independent of TLR4-LPS signaling, because TLR4-/- mice 

had normal IgG1 levels. On the other hand, the levels of IgG2b and IgM in TLR4-/- mice were 

significantly lower than those in WT mice. MyD88-/- mice had significant decreased IgG2b, 

IgG3 and IgM levels compared with WT mice. We found no significant alterations in the 

tested Ig levels in TRIF-/- mice compared with WT mice. 

    Mice were also immunized with the hapten-conjugated T cell-independent (TI) antigen, 

TNP-LPS (Fig. 7B). TNP-specific IgG1 production was observed in TNP-LPS-immunized 

WT mice. TLR4-/- mice showed defective its production. The IgG1 production was impaired 

in TRIF-/- mice, while MyD88-/- mice exhibited rather increased IgG1 production. TLR4-/- 

mice were impaired in not only IgG1 but also IgG2b, IgG3 and IgM production in response to 

TNP-LPS, suggesting that production of these antibodies was completely dependent on TLR4 

signaling. Intriguingly, IgG2b and IgG3 production to TNP-LPS was defective in TRIF-/- mice. 

MyD88-/- mice had impaired production of these antibodies, but were better responders than 

TRIF-/- mice. MyD88-/- and TRIF-/- mice were similarly impaired in IgM production to 

TNP-LPS. TNP-specific IgG2a and IgA were not detected in TNP-LPS-immunized WT mice 

(data not shown). These results indicate that TRIF pathway positively regulates IgG1 

production to TNP-LPS, while MyD88 negatively regulates its production. 
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4. Discussion 

In spite of wide usage of LPS as stimuli in studies of mouse B cells, the mechanism 

underlying TLR4-dependent B cell responses is still unclear. Here we show that TLR4 

differently engages MyD88 and TRIF pathways in response to lipid A or lipid A plus IL-4 in 

B cells. Upon lipid A stimulation alone, TLR4 preferentially utilizes MyD88 to induce CD86 

up-regulation and proliferation in B cells, while TRIF is partially involved in these responses 

(Fig. 8A). Intriguingly, TLR4 signaling in B cells can be shifted from MyD88-dependent 

pathway to TRIF-dependent pathway by IL-4 stimulation. TRIF is required for lipid A plus 

IL-4-induced cell division, Aicda expression, and CSR in B cells (Fig. 8B). These results 

suggest that TLR4-TRIF signaling may functionally link with IL-4R signaling to induce 

CSR-associated events. Additionally, IgG production to TNP-LPS, especially IgG2b and IgG3, 

requires TRIF signaling. The data provided in this study may give important information to 

understand the B cell activation induced by TLR4. 

    The previous study has suggested that IgG1 production by LPS plus IL-4 stimulation 

was comparably reduced in MyD88-/- and TRIF-/- (or TRAM-/-) B cells, while IgE secretion 

following LPS plus IL-4 stimulation was largely dependent on TRIF [18]. Additionally, cell 

proliferation and Aicda expression following LPS plus IL-4 stimulation were reduced in 

MyD88-/- as well as TRAM-/- B cells [18]. However, the concentration of LPS used in that 

study was relatively high (10 µg/ml) [18]. We used lower and different concentration of lipid 

A (0.1–1 µg/ml of lipid A) in the current study and infer from our results that TRIF signaling 

is critical for IL-4 mediated CSRs, including IgG1, IgE, and IgA, in TLR4-activated B cells. 

TLR4 plus IL-4-induced cell proliferation and Aicda expression in B cells are also largely 

dependent on TRIF signaling. 

    It has been shown that five or more cell divisions of B cells are required for CSR to IgG1 

and IgE [25]. Upon anti-CD38 plus IL-5 stimulation, a high number of γ1-µ switch circles 
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was observed in cultured B cells with five to six cell divisions compared with non-divided 

cells [26]. Decreased cell division most likely contributes to the decreased CSR in response to 

lipid A plus IL-4. NF-κB is known to play important roles in B cell proliferation and 

induction of Aicda expression [27-30]. It is of note that TRIF is required for sustained p65 

NF-κB activation in LPS plus IL-4-stimulated B cells [18]. Thus, NF-κB activation under 

TRIF pathway may be important for TLR4 plus IL-4-induced events leading to CSR. 

Alternatively, TRIF may be important for the initiation of the CSR program induced by TLR4 

plus IL-4 stimulation (Fig. 6B). It is now important to clarify signaling molecules and 

transcriptional factors regulated by TRIF in lipid A plus IL-4-stimulated B cells. 

    Monophosphoryl lipid A (MPLA) is a detoxified derivative of lipid A and has been 

associated with the preferential activation of TRIF signaling to enhance T cell priming and 

antibody responses against antigens [31]. More recently, cross-linking of BCR and TLR4 by a 

peptide antigen and MPLA activate TRIF-dependent signaling to induce TI IgG responses 

[32]. A change from diphosphoryl (in LPS or lipid A) to monophosphoryl (in MPLA) has 

been considered to trigger TRIF-biased and MyD88-independent TLR4 signaling [33]. In the 

current study, however, we found that IgG production by the hapten-conjugated LPS, 

especially IgG2b and IgG3, was largely dependent on TRIF-biased signaling (Fig. 7B). 

Theses results demonstrated that not only monophosphoryl but also diphosphoryl in LPS or 

lipid A is associated with TRIF-biased signaling for TI antibody responses. Thus, the number 

of phosphoryl in lipid A or the low toxicity of MPLA may not be critical for the triggering of 

TRIF-biased TLR4 signaling. Co-ligation of BCR and TLR4 by TI antigens might allow the 

induction of TRIF-biased signaling in B cells. 

    MyD88 in B cells plays a suppressive role in disease models including experimental 

autoimmune encephalomyelitis and Salmonella typhimurium infection [34,35]. The present 

study also showed a suppressive role of MyD88 in B cells. MyD88-/- mice had enhanced 
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serum IgG1 levels compared with WT mice (Fig. 7A). IgG1 production to TNP-LPS in 

MyD88-/- mice was higher mice than that of WT mice (Fig. 7B). The addition of IL-4 

markedly augmented cell division and Aicda expression in lipid A-stimulated MyD88-/- B 

cells compared with WT B cells (Fig. 5A and 6C). Thus, MyD88 may negatively regulate 

signaling pathway mediated by TLR4 plus IL-4R in B cells. Functional link between MyD88 

and TRIF pathways under TLR4 in B cells will be clarified in our future study. 

    Up-regulation of the co-stimulatory molecules including CD86, CD80, and CD40 by 

LPS on mouse macrophages is dependent on TRIF [36]. In contrast, lipid A-induced CD86 

up-regulation on B cells is largely dependent on MyD88 (Fig. 1A). Up-regulation of such 

co-stimulatory molecules on macrophages requires LPS-induced type 1 IFN production [36]. 

To produce type 1 IFN, TLR4/MD-2 needs to be internalized to endosome via membrane 

CD14 and activate TRIF signaling in myeloid cells [37,38]. Given that membrane CD14 is 

not expressed on B cells, TLR4/MD-2 might not be internalized by LPS stimulation in B cells. 

Furthermore, TRIF is unlikely to be involved in TLR4-induced CD86 up-regulation in B cells. 

It would be interesting to study differences between B cells and macrophages in the 

expression levels and localization of the TLR4/MD-2 complex and its adaptor molecules, 

including MyD88 and TRIF. 

    In conclusion, we identified differential requirements of MyD88 and TRIF under TLR4 

signaling in B cells. Results presented in this study provide information about the cooperative 

roles of TLRs and cytokine receptors in their contribution to innate immune responses against 

pathogens. In addition, this new information will provide a clue to the development of 

beneficial immunization strategies. 
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Figure legends 

Fig. 1. Lipid A-induced CD86 up-regulation and B cell proliferation are dependent on 

MyD88 pathway. 

(A) Spleen B cells from WT, TLR4-/-, MyD88-/- or TRIF-/- mice were stimulated with lipid A 

(0.1, 1 µg/ml), CpG-B (1µM), Pam3CSK4 (1 µg/ml), poly(I:C) (25 µg/ml) or anti-CD40 (1 

µg/ml). After 24 h, CD86 expression was determined by flow cytometry. Gray and solid lines 

depict cultured cells stimulated with medium alone and indicated stimulants, respectively. (B) 

Spleen B cells (1 × 105/well) from WT, TLR4-/-, MyD88-/- or TRIF-/- mice were stimulated 

with indicated stimulants. After 72 h, B cell proliferation was determined by 3H-Thymidine 

uptake. Data are shown as means ± SD. aP <0.05 vs. TLR4-/-, bP <0.05 vs. MyD88-/-, cP <0.05 

vs. TRIF-/-. All data are representative of at least three independent experiments. 

 

Fig. 2. Lipid A plus IL-4-elicited IgG1 and IgE CSRs are impaired in TRIF-/- B cells. 

(A) Spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with medium alone, 

lipid A (0.1, 1 µg/ml), CpG-B (1 µM), Pam3CSK4 (1 µg/ml) or anti-CD40 (1 µg/ml) in the 

presence of IL-4 (25 ng/ml). After 96 h, expression of B220 and IgG1 was determined by 

flow cytometry. The percentages of B220+ IgG1+ are indicated. (B) Spleen B cells from WT, 

TLR4-/-, MyD88-/- or TRIF-/- mice were stimulated with medium alone, lipid A (0.01, 0.1, 1 

µg/ml) or anti-CD40 (1 µg/ml) in the presence of IL-4 (25 ng/ml). After 7 days, IgE 

production in the culture supernatants was determined by ELISA. *P <0.05 vs. WT. N.D. 

depicts not detected. N.S. depicts not significant. All data are representative of at least three 

independent experiments. 

 

Fig. 3. IL-4-mediated CSR to IgA is impaired in lipid A plus TGF-β plus IL-5-stimulated 
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TRIF-/- B cells. 

(A) Spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with combination of 

the indicated stimulants (lipid A: 10 µg/ml, TGF-β: 1 ng/ml, IL-5: 5 ng/ml, IL-4: 5 ng/ml). 

After 96 h, expression of B220 and IgA was determined by flow cytometry. The percentages 

of B220+ IgA+ are indicated. (B) Spleen B cells from WT, TLR4-/-, MyD88-/- or TRIF-/- mice 

were stimulated with combination of the indicated stimulants (lipid A: 10 µg/ml, TGF-β : 1 

ng/ml, IL-5: 5 ng/ml, IL-4: 25 ng/ml). After 7 days, IgA production was determined by 

ELISA. (C) Spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with medium 

alone or lipid A (0.01, 0.1 or 1 µg/ml). After 96 h, expression of B220 and IgG3 was 

determined by flow cytometry. The percentages of B220+ IgG3+ are indicated. (D) Spleen B 

cells from WT, TLR4-/-, MyD88-/- or TRIF-/- mice were stimulated with medium alone or lipid 

A (0.01, 0.1 or 1 µg/ml). After 7 days, IgG3 production in the culture supernatants was 

determined by ELISA. Data are shown as means ± SD. *P <0.05, **P <0.005. N.D. depicts 

not detected. N.S. depicts not significant. All data are representative of at least three 

independent experiments. 

 

Fig 4. Neither TRIF nor MyD88 pathway is involved in the regulation of IL-4Rα 

expression and IL-4-mediated responses in B cells. 

(A) Spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with medium alone, 

lipid A (1 µg/ml) or anti-CD40 (1 µg/ml). After 24 h, expression of IL-4Rα was determined 

by flow cytometry. Gray and solid lines depict cultured cells stained with isotype control Abs 

and IL-4Rα mAb, respectively. (B) Spleen B cells from WT, MyD88-/- or TRIF-/- mice were 

stimulated with medium alone or IL-4 (25 ng/ml). After 24 h, expression of CD86 was 

determined by flow cytometry. Gray and solid lines depict cultured cells stained with isotype 

control Abs and CD86 mAb, respectively. (C) Purified spleen B cells from WT, MyD88-/- or 
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TRIF-/- mice were stimulated with medium alone, IL-4 (25 ng/ml), lipid A (1 µg/ml) or lipid A 

(1 µg/ml) plus IL-4 (25 ng/ml). After 24 h, expression of P-STAT6 was determined by flow 

cytometry. Gray and solid lines depict cultured cells stained with isotype control Abs and 

P-STAT6 mAb, respectively. All data are representative of at least three independent 

experiments. 

 

Fig. 5. TLR4 plus IL-4-induced cell division is impaired in TRIF-/- B cells. 

(A, B) CFSE-labeled spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with 

medium alone, lipid A (1 µg/ml), lipid A (1 µg/ml) plus IL-4 (25 ng/ml) or anti-CD40 (1 

µg/ml) plus IL-4 (25 ng/ml). After 72 h, CFSE fluorescence in viable cells was determined by 

flow cytometry (A). The values indicate the percentages of divided cells. The relation 

between the proportion of CFSE positive cells and the cell division was determined (B). Data 

are shown as means ± SD. aP <0.05 vs. WT, bP <0.05 vs. MyD88-/-, cP <0.05 vs. TRIF-/-. All 

data are representative of at least three independent experiments. 

 

Fig. 6. TLR4 plus IL-4-induced IgG1+ cells per generation and Aicda expression are 

impaired in TRIF-/- B cells. 

(A, B) CFSE-labeled spleen B cells from WT, MyD88-/- or TRIF-/- mice were stimulated with 

lipid A (1 µg/ml) plus IL-4 (25 ng/ml) or anti-CD40 (1 µg/ml) plus IL-4 (25 ng/ml). After 96 

h, IgG1 expression was determined by flow cytometry (A). The relation between the 

proportion of IgG1+ and the cell division was determined (B). Data are shown as means ± 

SD. aP <0.05 vs. WT, bP <0.05 vs. MyD88-/-, cP <0.05 vs. TRIF-/-. (C) Spleen B cells from 

WT, MyD88-/- or TRIF-/- mice were stimulated with medium alone, lipid A (1 µg/ml) or lipid 

A (1 µg/ml) plus IL-4 (25 ng/ml). After 2 or 3 days, total RNA was extracted from cultured 

cells and expression of Aicda mRNA was examined by RT-qPCR. All data are representative 
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of at least three independent experiments. 

 

Fig. 7. IgG1 production to TNP-LPS is impaired in TRIF-/- mice, while MyD88-/- mice 

exhibit increased its production. 

(A) Serum Ig titers were determined by ELISA. Black bars indicate the averages from each 

group (WT: 8 mice, TLR4-/-, MyD88-/- and TRIF-/-: 7 mice). *P <0.05, **P <0.01. (B) 

TNP-specific Ab production was determined by ELISA. OD values were shown as means ± 

SD in the panels. Each group contained 7 mice. aP <0.05 vs. WT, bP <0.05 vs. TLR4-/-, cP 

<0.05 vs. MyD88-/-, dP <0.05 vs. TRIF-/-. All data are representative of at least two 

independent experiments. 

 

Fig. 8. A hypothetical model of MyD88- or TRIF-dependent B cell responses upon lipid A 

or lipid A plus IL-4 stimulation. 

(A) MyD88 pathway has a major role for lipid A-induced CD86 up-regulation, cell division, 

and proliferation of B cells. TRIF pathway is required, but not sufficient for these responses. 

(B) In contrast, lipid A plus IL-4-induced B cell responses, including cell division, Aicda 

expression, and,  µ to γ1 or ε class switch recombination, are largely dependent on TRIF 

pathway. TRIF-dependent TLR4 signaling may functionally link with IL-4R signaling. On the 

other hand, lipid A-stimulated MyD88-/- B cells are hyper-reactive to IL-4 stimulation 

compared with WT mice, suggesting that MyD88 pathway may negatively regulate 

TLR4-TRIF plus IL-4-mediated B cell responses. 
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