1,662 research outputs found
Classically Integrable Cosmological Models with a Scalar Field
New classes of classically integrable models in the cosmological theories
with a scalar field are obtained by using freedoms of defining time and fields.
In particular, some models with the sum of exponential potentials in the flat
spatial metric are shown to be integrable. The model with the Sine-Gordon
potential can be solved in terms of analytic continuation of the non-periodic
Toda field theory.Comment: 10 pages, Late
Sweeping the Space of Admissible Quark Mass Matrices
We propose a new and efficient method of reconstructing quark mass matrices
from their eigenvalues and a complete set of mixing observables. By a
combination of the principle of NNI (nearest neighbour interaction) bases which
are known to cover the general case, and of the polar decomposition theorem
that allows to convert arbitrary nonsingular matrices to triangular form, we
achieve a parameterization where the remaining freedom is reduced to one
complex parameter. While this parameter runs through the domain bounded by a
circle with radius R determined by the up-quark masses around the origin in the
complex plane one sweeps the space of all mass matrices compatible with the
given set of data.Comment: 18 page
Two-frequency heating technique at the 18 GHz electron cyclotron resonance ion source of the National Institute of Radiological Sciences
The two-frequency heating technique was studied to increase the beam
intensities of highly charged ions provided by the high-voltage extraction
configuration (HEC) ion source at the National Institute of Radiological
Sciences (NIRS). The observed dependences on microwave power and frequency
suggested that this technique improved plasma stability but it required precise
frequency tuning and more microwave power than was available before 2013.
Recently, a new, high-power (1200 W) wide bandwidth (17.1-18.5 GHz)
travelling-wave-tube amplifier (TWTA) was installed. After some single tests
with klystron and TWT amplifiers the simultaneous injection of the two
microwaves has been successfully realized. The dependence of highly charged
ions (HCI) currents on the superposed microwave power was studied by changing
only the output power of one of the two amplifiers, alternatively. While
operating the klystron on its fixed 18.0 GHz, the frequency of the TWTA was
swept within its full limits (17.1-18.5 GHz), and the effect of this frequency
on the HCI-production rate was examined under several operation conditions. As
an overall result, new beam records of highly charged argon, krypton, and xenon
beams were obtained at the NIRS-HEC ion source by this high-power two-frequency
operation mode
Effect of water vapor on the spallation of thermal barrier coating systems during laboratory cyclic oxidation testing.
The effect of water and water vapor on the lifetime of Ni-based superalloy samples coated with a typical thermal barrier coating system—b-(Ni,Pt)Al bond coat and yttria stabilized zirconia (YSZ) top coat deposited by electron beam physical vapor deposition (EB-PVD) was studied. Samples were thermally cycled to 1,150 C and subjected to a water-drop test in order to elucidate the effect of water vapor on thermal barrier coating (TBC) spallation. It was shown that the addition of water promotes spallation of TBC samples after a given number of cycles at 1,150 C. This threshold was found to be equal to 170 cycles for the present system. Systems based on b-NiAl bond coat or on Pt-rich c/c0 bond coat were also sensitive to the water-drop test. Moreover, it was shown that water vapor in ambient air after minutes or hours at room temperature, promotes also TBC spallation once the critical number of cycles has been reached. This desktop spalling (DTS) can be prevented by locking up the cycled samples in a dry atmosphere box. These results for TBC systems confirm and document Smialek’s theory about DTS and moisture induced delayed spalling (MIDS) being the same phenomenon. Finally, the mechanisms implying hydrogen embrittlement or surface tension modifications are discussed
Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer
Primary and atmospheric cosmic-ray spectra were precisely measured with the
BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve
seven times higher resolution in momentum measurement. We report absolute
fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and
1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the
momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.
Unified Explanation of Quark and Lepton Masses and Mixings in the Supersymmetric SO(10) Model
We discussed neutrino masses and mixings in SUSY SO(10) model where quarks
and leptons have Yukawa couplings to at least two 10 and one Higgs
scalars. In this model, the Dirac and the right-handed Majorana mass terms are
expressed by linear combinations of quark and charged lepton mass matrices,
which then determine the neutrino mass matrix by the see-saw mechanism. We show
that there are various solutions to reproduce a large mixing angle for
and a small mixing angle for , as well as the
hierarchical mass spectrum of neutrinos.Comment: LaTeX, 32 pages including 15 eps figure
- …