15,134 research outputs found

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    A Modeling Study of the Spring 2011 Extreme US Weather Activity

    Get PDF
    The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding

    Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model

    Get PDF
    The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone

    Cosmological Inhomogeneities with Bose-Einstein Condensate Dark Matter

    Full text link
    We consider the growth of cosmological perturbations to the energy density of dark matter during matter domination when dark matter is a scalar field that has undergone Bose-Einstein condensation. We study these inhomogeneities within the framework of both Newtonian gravity, where the calculation and results are more transparent, and General Relativity. The direction we take is to derive analytical expressions, which can be obtained in the small pressure limit. Throughout we compare our results to those of the standard cosmology, where dark matter is assumed pressureless, using our analytical expressions to showcase precise differences. We find, compared to the standard cosmology, that Bose-Einstein condensate dark matter leads to a scale factor, gravitational potential and density contrast that increase at faster rates.Comment: 17 pages, 2 figures; typos corrected, references adde

    Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation

    Get PDF
    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction scheme (McRAS-AC) including, among others, a new ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-yr-long integration of the AGCM with McRAS-AC are compared with their counterparts from an integration of the baseline GEOS-5 AGCM, as well as satellite observations. Generally McRAS-AC simulations have smaller biases in cloud fields and cloud radiative effects over most of the regions of the Earth than the baseline GEOS-5 AGCM. Two systematic biases are identified in the McRAS-AC runs: one is underestimation of cloud particle numbers around 40° S–60° S, and one is overestimate of cloud water path during the Northern Hemisphere summer over the Gulf Stream and North Pacific. Sensitivity tests show that these biases potentially originate from biases in the aerosol input. The first bias is largely eliminated in a test run using 50% smaller radius of sea-salt aerosol particles, while the second bias is substantially reduced when interactive aerosol chemistry is turned on. The main weakness of McRAS-AC is the dearth of low-level marine stratus clouds, a probable outcome of lack of explicit dry-convection in the cloud scheme. Nevertheless, McRAS-AC largely simulates realistic clouds and their optical properties that can be improved further with better aerosol input. An assessment using the COSP simulator in a 1-yr integration provides additional perspectives for understanding cloud optical property differences between the baseline and McRAS-AC simulations and biases against satellite data. Overall, McRAS-AC physically couples aerosols, the microphysics and macrophysics of clouds, and their radiative effects and thereby has better potential to be a valuable tool for climate modeling research

    Propulsion in a viscoelastic fluid

    Full text link
    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.Comment: 21 pages, 1 figur

    A statistical data-based approach to instability detection and wear prediction in radial turning processes

    Get PDF
    Radial turning forces for tool-life improvements are studied, with the emphasis on predictive rather than preventive maintenance. A tool for wear prediction in various experimental settings of instability is proposed through the application of two statistical approaches to process data on tool-wear during turning processes: three sigma edit rule analysis and Principal Component Analysis (PCA). A Linear Mixed Model (LMM) is applied for wear prediction. These statistical approaches to instability detection generate results of acceptable accuracy for delivering expert opinion. They may be used for on-line monitoring to improve the processing of different materials. The LMM predicted significant differences for tool wear when turning different alloys and with different lubrication systems. It also predicted the degree to which the turning process could be extended while conserving stability. Finally, it should be mentioned that tool force in contact with the material was not considered to be an important input variable for the model.The work was performed as a part of the HIMMOVAL (Grant Agreement Number: 620134) project within the CLEAN-SKY program, linked to the SAGE2 project for geared open-rotor development and the delivery of the demonstrator part. Funding through grant IT900-16 is also acknowledged from the Basque Government Department of Education, Universities and Research

    Strategy for the inversion of Hinode spectropolarimetric measurements in the quiet Sun

    Full text link
    In this paper we propose an inversion strategy for the analysis of spectropolarimetric measurements taken by {\em Hinode} in the quiet Sun. The spectropolarimeter of the Solar Optical Telescope aboard {\em Hinode} records the Stokes spectra of the \ion{Fe}{i} line pair at 630.2 nm with unprecendented angular resolution, high spectral resolution, and high sensitivity. We discuss the need to consider a {\em local} stray-light contamination to account for the effects of telescope diffraction. The strategy is applied to observations of a wide quiet Sun area at disk center. Using these data we examine the influence of noise and initial guess models in the inversion results. Our analysis yields the distributions of magnetic field strengths and stray-light factors. They show that quiet Sun internetwork regions consist mainly of hG fields with stray-light contaminations of about 0.8.Comment: To appear in Publications of the Astronomical Society of Japan, 8 pages, 10 figure

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    Reducing green turtle bycatch in small-scale fisheries using illuminated gillnets: The Cost of Saving a Sea Turtle

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gillnet fisheries exist throughout the oceans and have been implicated in high bycatch rates of sea turtles. In this study, we examined the effectiveness of illuminating nets with light-emitting diodes (LEDs), placed on floatlines in order to reduce sea turtle bycatch in a small-scale bottom-set gillnet fishery. In Sechura Bay, Northern Peru, 114 pairs of control and illuminated nets were deployed. The predicted mean Catch Per Unit of Effort (CPUE) of target species, standardized for environmental variables using generalized additive model analysis, was similar for both control and illuminated nets. In contrast, the predicted mean CPUE of green turtles (Chelonia mydas) was reduced by 63.9% in illuminated nets. One hundred twenty-five green turtles were caught in control nets while 62 were caught in illuminated nets. This statistically significant reduction (GAM analysis, p<0.05) in sea turtle bycatch suggests that net illumination could be an effective conservation tool. Challenges to implementing the use of LEDs include equipment costs, increased net handling times, and limited awareness among fishermen regarding the effectiveness of this technology. Cost estimates for preventing a single sea turtle catch are as low as 34USD,whilethecoststooutfittheentiregillnetfisheryinSechuraBaycanbeaslowas34 USD, while the costs to outfit the entire gillnet fishery in Sechura Bay can be as low as 9200 USD. Understanding these cost challenges emphasizes the need for institutional support from national ministries, international non-governmental organizations and the broader fisheries industry to make possible widespread implementation of net illumination as a sea turtle bycatch reduction strategy.ProDelphinusDarwin InitiativeNational Marine Fisheries Service of the National Oceanic and Atmospheric AdministrationUniversity of Hawaii Joint Institute for Marine and Atmospheric Researc
    corecore