17 research outputs found

    Autophagy Impairment Induces Premature Senescence in Primary Human Fibroblasts

    Get PDF
    BACKGROUND:Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells. METHODOLOGY/PRINCIPAL FINDINGS:Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated β-galactosidase (SA-β-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-α or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways. CONCLUSION:Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts

    Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes

    No full text
    Cellular ageing is associated with accumulation of undegradable intralysosomal material, called lipofuscin. In order to accelerate the lipofuscin accumulation, confluent, growth-arrested human fibroblasts were cultured under hyperoxic conditions. To provide a better insight into the effects of lipofuscin on cellular functions, we compared lysosomal stability in control and lipofuscin-loaded human fibroblasts under conditions of lysosome-targeted stress induced by exposure to either the lysosomotropic detergent MSDH or the redox-cycling quinone naphthazarin. We show that lysosomal damage, assessed by acridine-orange relocation, translocation of cathepsin D to the cytosol, and alkalinization of lysosomes, is more pronounced in control than in lipofuscin-loaded fibroblasts. Finding that lysosomal integrity was less affected or even preserved in case of lipofuscin-loaded cells enables us to suggest that lipofuscin exerts lysosome-stabilizing properties

    Membrane proteomics of phagosomes suggests a connection to autophagy

    Get PDF
    Phagocytosis is the central process by which macrophage cells internalize and eliminate infectious microbes as well as apoptotic cells. During maturation, phagosomes containing engulfed particles fuse with various endosomal compartments through the action of regulatory molecules on the phagosomal membrane. In this study, we performed a proteomic analysis of the membrane fraction from latex bead-containing (LBC) phagosomes isolated from macrophages. The profile, which comprised 546 proteins, suggests diverse functions of the phagosome and potential connections to secretory processes, toll-like receptor signaling, and autophagy. Many identified proteins were not previously known to reside in the phagosome. We characterized several proteins in LBC phagosomes that change in abundance on induction of autophagy, a process that has been previously implicated in the host defense against microbial pathogens. These observations suggest crosstalk between autophagy and phagocytosis that may be relevant to the innate immune response of macrophages

    Attenuated mTOR Signaling and Enhanced Autophagy in Adipocytes from Obese Patients with Type 2 Diabetes

    No full text
    Type 2 diabetes (T2D) is strongly linked to obesity and an adipose tissue unresponsive to insulin. The insulin resistance is due to defective insulin signaling, but details remain largely unknown. We examined insulin signaling in adipocytes from T2D patients, and contrary to findings in animal studies, we observed attenuation of insulin activation of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). As a consequence, mTORC1 downstream effects were also affected in T2D: feedback signaling by insulin to signal-mediator insulin receptor substrate-1 (IRS1) was attenuated, mitochondria were impaired and autophagy was strongly upregulated. There was concomitant autophagic destruction of mitochondria and lipofuscin particles, and a dependence on autophagy for ATP production. Conversely, mitochondrial dysfunction attenuated insulin activation of mTORC1, enhanced autophagy and attenuated feedback to IRS1. The overactive autophagy was associated with large numbers of cytosolic lipid droplets, a subset with colocalization of perlipin and the autophagy protein LC3/atg8, which can contribute to excessive fatty acid release. Patients with diagnoses of T2D and overweight were consecutively recruited from elective surgery, whereas controls did not have T2D. Results were validated in a cohort of patients without diabetes who exhibited a wide range of insulin sensitivities. Because mitochondrial dysfunction, inflammation, endoplasmic-reticulum stress and hypoxia all inactivate mTORC1, our results may suggest a unifying mechanism for the pathogenesis of insulin resistance in T2D, although the underlying causes might differ
    corecore