361 research outputs found

    Epidemiological Investigation of Bovine Ephemeral Fever Outbreaks in Israel

    Get PDF
    Outbreaks of bovine ephemeral fever (BEF) occurred in Israel in 1990, 1999, and 2004. The main patterns of BEF spread were similar in the 1990 and in 1999 epidemics, and the BEF virus was probably carried in vectors transported by air streams across the Rift Valley and the Red Sea. In the 2004 outbreak, the primary focus of the disease was the southern Mediterranean coastal plain and the disease agent was apparently brought by infected mosquitoes carried from their breeding site in the Nile Delta by the south-western winds. The disease broke out under optimal ecological conditions, among a vulnerable cattle population and spread rapidly; it showed essentially a spring-summer herd incidence and terminated soon after the night average ambient temperature fell below 16°C in late autumn. The herd incidence of the disease reached 78.4%, 97.7%, and 100% in 1990, 1999, and 2004, respectively. The highest herd incidence, morbidity, and case fatality rates were noted in dairy cattle herds in the Jordan Valley, with morbidity of 20%, 38.6%, and 22.2%, and case fatality rate among affected animals of 2%, 8.6%, and 5.4% in 1990, 1999, and 2004, respectively. The average sero-positivity to BEF in 1999 was 39.5%, which matched the morbidity rate. Comparison among the various age groups showed that the lowest morbidity rates were observed in the youngest age group, that is, heifers up to 1 year, with 3.2%, 3.6%, and 4.2% in 1990, 1999, and 2004, respectively. In heifers from 1 year to calving, the morbidity rates were 13.8%, 14.9%, and 28%, respectively, in first calvers 30.8%, 31.6%, and 28.3%, respectively, and in cows 34.3%, 35.7%, and 27.2%, respectively. All affected cattle were over the age of 3 months. It is hypothesized that mosquitoes and not Culicoides spp. are the vectors of the BEF virus in Israel

    Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7) play a central role in magnesium homeostasis, which is critical for maintaining glucose and insulin metabolism. However, it is unclear whether common genetic variation in <it>TRPM6 </it>and <it>TRPM7 </it>contributes to risk of type 2 diabetes.</p> <p>Methods</p> <p>We conducted a nested case-control study in the Women's Health Study. During a median of 10 years of follow-up, 359 incident diabetes cases were diagnosed and matched by age and ethnicity with 359 controls. We analyzed 20 haplotype-tagging single nucleotide polymorphisms (SNPs) in <it>TRPM6 </it>and 5 common SNPs in <it>TRPM7 </it>for their association with diabetes risk.</p> <p>Results</p> <p>Overall, there was no robust and significant association between any single SNP and diabetes risk. Neither was there any evidence of association between common <it>TRPM6 </it>and <it>TRPM7 </it>haplotypes and diabetes risk. Our haplotype analyses suggested a significant risk of type 2 diabetes among carriers of both the rare alleles from two non-synomous SNPs in <it>TRPM6 </it>(Val1393Ile in exon 26 [rs3750425] and Lys1584Glu in exon 27 [rs2274924]) when their magnesium intake was lower than 250 mg per day. Compared with non-carriers, women who were carriers of the haplotype 1393Ile-1584Glu had an increased risk of type 2 diabetes (OR, 4.92, 95% CI, 1.05–23.0) only when they had low magnesium intake (<250 mg/day).</p> <p>Conclusion</p> <p>Our results provide suggestive evidence that two common non-synonymous <it>TRPM6 </it>coding region variants, Ile1393Val and Lys1584Glu polymorphisms, might confer susceptibility to type 2 diabetes in women with low magnesium intake. Further replication in large-scale studies is warranted.</p

    Constitutively decreased TGFBR1 allelic expression is a common finding in colorectal cancer and is associated with three TGFBR1 SNPs

    Get PDF
    Purpose: Constitutively decreased TGFBR1 allelic expression is emerging as a potent modifier of colorectal cancer risk in mice and humans. This phenotype was first observed in mice, then in lymphoblastoid cell lines from patients with microsatellite stable colorectal tumors. Patients and Methods: We assessed the frequency of constitutively decreased TGFBR1 allelic expression and association with SNPs covering the TGFBR1 locus using RNA and DNA extracted from the peripheral blood lymphocytes of 118 consecutive patients with biopsy-proven adenocarcinoma of the colon or the rectum. Results: We found that 11(9.3%) of 118 patients exhibited decreased TGFBR1 allelic expression (TGFBR1 ASE). TGFBR1 ASE was strongly associated with three SNPs in linkage disequilibrium with each other: rs7034462 (p = 7.2 × 10-4), TGFBR1*6A (p = 1.6 × 10-4) and rs11568785 (p = 1.4 × 10-4). Conclusion: These results confirm the high prevalence of constitutively decreased TGFBR1 allelic expression among patients with colorectal cancer. The association of this phenotype with TGFBR1*6A, rs7034462 and rs1156875 suggests an association between TGFBR1 SNPs and colorectal cancer, which warrants additional studies

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Common genetic variability in ESR1 and EGF in relation to endometrial cancer risk and survival

    Get PDF
    We investigated common genetic variation in the entire ESR1 and EGF genes in relation to endometrial cancer risk, myometrial invasion and endometrial cancer survival. We genotyped a dense set of single-nucleotide polymorphisms (SNPs) in both genes and selected haplotype tagging SNPs (tagSNPs). The tagSNPs were genotyped in 713 Swedish endometrial cancer cases and 1567 population controls and the results incorporated into logistic regression and Cox proportional hazards models. We found five adjacent tagSNPs covering a region of 15 kb at the 5′ end of ESR1 that decreased the endometrial cancer risk. The ESR1 variants did not, however, seem to affect myometrial invasion or endometrial cancer survival. For the EGF gene, no association emerged between common genetic variants and endometrial cancer risk or myometrial invasion, but we found a five-tagSNP region that covered 51 kb at the 5′ end of the gene where all five tagSNPs seemed to decrease the risk of dying from endometrial cancer. One of the five tagSNPs in this region was in strong linkage disequilibrium (LD) with the untranslated A61G (rs4444903) EGF variant, earlier shown to be associated with risk for other forms of cancer

    Synergistic Association of PTGS2 and CYP2E1 Genetic Polymorphisms with Lung Cancer Risk in Northeastern Chinese

    Get PDF
    BACKGROUND: Lung cancer is the most common cause of cancer-related deaths worldwide. The aim of this study was to investigate the association of five extensively-studied polymorphisms in PTGS2 (rs689466, rs5275, rs20417) and CYP2E1 (rs2031920, rs6413432) genes with lung cancer risk in a large northeastern Chinese population. METHODOLOGY/PRINCIPAL FINDINGS: This is a hospital-based case-control study involving 684 patients with lung cancer and 604 cancer-free controls. Genotyping was performed using the PCR-LDR method. Data were analyzed using Haplo.stats and MDR programs. There were significant differences between patients and controls in allele/genotype distributions of rs5275 (P = 0.002/0.003) and rs6413432 (P = 0.037/0.044), as well as in genotype distributions of rs689466 (P = 0.02). The risk for lung cancer associated with the rs5275-C mutant allele was decreased by 60% (95% CI [confidence interval]: 0.21-0.74; P = 0.004) under the recessive model. Carriers of rs689466-G mutant allele had a 28% (95% CI: 0.57-0.92; P = 0.008) reduced risk of developing lung cancer relative to the AA genotype carriers. In haplotype analysis, haplotype G-C-C-T (in order of rs689466, rs5275, rs2031920 and rs6413432) decreased the odds of lung cancer by 28% (95% CI: 0.51-0.93; P = 0.019) after adjusting for confounding factors, whereas haplotype A-T-T-T had 1.49-fold (95% CI: 1.21-1.79; P = 0.012) increased risk for lung cancer. Using MDR method, the overall best model including rs5275, rs689466 and rs6413432 polymorphisms was identified with a maximal testing accuracy of 66.1% and a maximal cross-validation consistency of 10 out of 10 (P = 0.003). CONCLUSIONS/SIGNIFICANCE: Our findings demonstrated a potentially synergistic association of PTGS2 and CYP2E1 polymorphisms with the underlying cause of lung cancer in northeastern Chinese

    Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Introduction Certain rare, familial mutations in the ATM, BRCA1, BRCA2, CHEK2 or TP53 genes increase susceptibility to breast cancer but it has not, until now, been clear whether common polymorphic variants in the same genes also increase risk. Methods We have attempted a comprehensive, single nucleotide polymorphism (SNP)- and haplotype-tagging association study on each of these five genes in up to 4,474 breast cancer cases from the British, East Anglian SEARCH study and 4,560 controls from the EPIC-Norfolk study, using a two-stage study design. Nine tag SNPs were genotyped in ATM, together with five in BRCA1, sixteen in BRCA2, ten in CHEK2 and five in TP53, with the aim of tagging all other known, common variants. SNPs generating the common amino acid substitutions were specifically forced into the tagging set for each gene. Results No significant breast cancer associations were detected with any individual or combination of tag SNPs. Conclusion It is unlikely that there are any other common variants in these genes conferring measurably increased risks of breast cancer in our study population
    corecore