16 research outputs found

    Determination of Coenzyme A and Acetyl-Coenzyme A in Biological samples Using HPLC with UV Detection

    Get PDF
    Coenzyme A (CoA) and acetyl-coenzyme A (acetyl-CoA) play essential roles in cell energy metabolism. Dysregulation of the biosynthesis and functioning of both compounds may contribute to various pathological conditions. We describe here a simple and sensitive HPLC-UV based method for simultaneous determination of CoA and acetyl-CoA in a variety of biological samples, including cells in culture, mouse cortex, and rat plasma, liver, kidney, and brain tissues. The limits of detection for CoA and acetyl-CoA are \u3e10-fold lower than those obtained by previously described HPLC procedures, with coefficients of variatio

    Biological variability dominates and influences analytical variance in HPLC-ECD studies of the human plasma metabolome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomarker-based assessments of biological samples are widespread in clinical, pre-clinical, and epidemiological investigations. We previously developed serum metabolomic profiles assessed by HPLC-separations coupled with coulometric array detection that can accurately identify <it>ad libitum </it>fed and caloric-restricted rats. These profiles are being adapted for human epidemiology studies, given the importance of energy balance in human disease.</p> <p>Methods</p> <p>Human plasma samples were biochemically analyzed using HPLC separations coupled with coulometric electrode array detection.</p> <p>Results</p> <p>We identified these markers/metabolites in human plasma, and then used them to determine which human samples represent blinded duplicates with 100% accuracy (N = 30 of 30). At least 47 of 61 metabolites tested were sufficiently stable for use even after 48 hours of exposure to shipping conditions. Stability of some metabolites differed between individuals (N = 10 at 0, 24, and 48 hours), suggesting the influence of some biological factors on parameters normally considered as analytical.</p> <p>Conclusion</p> <p>Overall analytical precision (mean median CV, ~9%) and total between-person variation (median CV, ~50ā€“70%) appear well suited to enable use of metabolomics markers in human clinical trials and epidemiological studies, including studies of the effect of caloric intake and balance on long-term cancer risk.</p

    Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research

    Get PDF
    Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results
    corecore