74 research outputs found

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Ordering kinetics of stripe patterns

    Full text link
    We study domain coarsening of two dimensional stripe patterns by numerically solving the Swift-Hohenberg model of Rayleigh-Benard convection. Near the bifurcation threshold, the evolution of disordered configurations is dominated by grain boundary motion through a background of largely immobile curved stripes. A numerical study of the distribution of local stripe curvatures, of the structure factor of the order parameter, and a finite size scaling analysis of the grain boundary perimeter, suggest that the linear scale of the structure grows as a power law of time with a craracteristic exponent z=3. We interpret theoretically the exponent z=3 from the law of grain boundary motion.Comment: 4 pages, 4 figure

    Grain boundary motion in layered phases

    Full text link
    We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-B\'enard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ϵ1/2\epsilon^{-1/2}, where ϵ\epsilon is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time dependent traveling velocity of the boundary, and especially their dependence on wavenumber. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain boundary motion through curved rolls is the dominant coarsening mechanism.Comment: 16 pages, 5 figure

    Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study

    Full text link
    We study single-chain motion in semidilute solutions of polymers of length N = 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm. The crossover length of the transition from Zimm (short lengths and times) to Rouse dynamics (larger scales) is proportional to the static screening length. The crossover time is the corresponding Zimm time. Our data indicate Zimm behavior at large lengths but short times. There is no hydrodynamic screening until the chains feel constraints, after which they resist the flow: "Incomplete screening" occurs in the time domain.Comment: 3 figure

    Electron-Electron Interactions and the Hall-Insulator

    Full text link
    Using the Kubo formula, we show explicitly that a non-interacting electron system can not behave like a Hall-insulator, {\it ie.,} a DC resistivity matrix ρxx\rho_{xx}\rightarrow\infty and ρxy=\rho_{xy}=finite in the zero temperature limit, as has been observed recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by constructing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can approximately equal to its classical value. A Hall-insulator is realized in this model when the density of mobile electrons becomes vanishingly small. It is shown that in non-interacting electron systems, the zero-temperature frequency-dependent conductacnce generally does not give the DC conductance.Comment: 11 pages, RevTeX3.

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur

    Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803

    Get PDF
    The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria

    Renormalization group approach to multiscale modelling in materials science

    Full text link
    Dendritic growth, and the formation of material microstructure in general, necessarily involves a wide range of length scales from the atomic up to sample dimensions. The phase field approach of Langer, enhanced by optimal asymptotic methods and adaptive mesh refinement, copes with this range of scales, and provides an effective way to move phase boundaries. However, it fails to preserve memory of the underlying crystallographic anisotropy, and thus is ill-suited for problems involving defects or elasticity. The phase field crystal (PFC) equation-- a conserving analogue of the Hohenberg-Swift equation --is a phase field equation with periodic solutions that represent the atomic density. It can natively model elasticity, the formation of solid phases, and accurately reproduces the nonequilibrium dynamics of phase transitions in real materials. However, the PFC models matter at the atomic scale, rendering it unsuitable for coping with the range of length scales in problems of serious interest. Here, we show that a computationally-efficient multiscale approach to the PFC can be developed systematically by using the renormalization group or equivalent techniques to derive appropriate coarse-grained coupled phase and amplitude equations, which are suitable for solution by adaptive mesh refinement algorithms

    Dynamics of heteropolymers in dilute solution: effective equation of motion and relaxation spectrum

    Full text link
    The dynamics of a heteropolymer chain in solution is studied in the limit of long chain length. Using functional integral representation we derive an effective equation of motion, in which the heterogeneity of the chain manifests itself as a time-dependent excluded volume effect. At the mean field level, the heteropolymer chain is therefore dynamically equivalent to a homopolymer chain with both time-independent and time-dependent excluded volume effects. The perturbed relaxation spectrum is also calculated. We find that heterogeneity also renormalizes the relaxation spectrum. However, we find, to the lowest order in heterogeneity, that the relaxation spectrum does not exhibit any dynamic freezing, at the point when static (equilibrium) ``freezing'' transition occurs in heteropolymer. Namely, the breaking of fluctuation-dissipation theorem (FDT) proposed for spin glass dynamics does not have dynamic effect in heteropolymer, as far as relaxation spectrum is concerned. The implication of this result is discussed
    corecore