3,741 research outputs found

    Coherent Raman spectroscopies for measuring molecular flow velocity

    Get PDF
    Various types of coherent Raman spectroscopy are characterized and their application to molecular flow velocity and direction measurement and species concentration and temperature determination is discussed

    Coherent Raman spectroscopy for supersonic flow measurments

    Get PDF
    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows

    IR pumped third-harmonic generation and sum-frequency generation in diatomic molecules

    Get PDF
    The potential efficiency of using nonlinear up-conversion techniques for the high efficiency type lasers (CO,CO2, and chemical) is assessed. Results indicate that: the small pump photon energy necessitates the use of molecular media for conversion if resonance enhancement is to be used and that molecular systems present several problems. These difficulties include: their levels are complex; their transition probabilities are often unknown; and the oscillator strengths among vibrational levels in the ground electronic state of a molecule are much smaller than those among electronic states of an atom, thus limiting the magnitude of nonlinear interactions. It is shown that this problem can be eliminated by making use of vibronic transitions which, being primarily electronic transitions have much larger matrix elements and efficient conversion can be achieved with molecular systems

    Velocity measurements by laser resonance fluorescence

    Get PDF
    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation

    Outlier Detection Using Nonconvex Penalized Regression

    Full text link
    This paper studies the outlier detection problem from the point of view of penalized regressions. Our regression model adds one mean shift parameter for each of the nn data points. We then apply a regularization favoring a sparse vector of mean shift parameters. The usual L1L_1 penalty yields a convex criterion, but we find that it fails to deliver a robust estimator. The L1L_1 penalty corresponds to soft thresholding. We introduce a thresholding (denoted by Θ\Theta) based iterative procedure for outlier detection (Θ\Theta-IPOD). A version based on hard thresholding correctly identifies outliers on some hard test problems. We find that Θ\Theta-IPOD is much faster than iteratively reweighted least squares for large data because each iteration costs at most O(np)O(np) (and sometimes much less) avoiding an O(np2)O(np^2) least squares estimate. We describe the connection between Θ\Theta-IPOD and MM-estimators. Our proposed method has one tuning parameter with which to both identify outliers and estimate regression coefficients. A data-dependent choice can be made based on BIC. The tuned Θ\Theta-IPOD shows outstanding performance in identifying outliers in various situations in comparison to other existing approaches. This methodology extends to high-dimensional modeling with pnp\gg n, if both the coefficient vector and the outlier pattern are sparse

    Winding String Condensation and Noncommutative Deformation of Spacelike Singularity

    Full text link
    In a previous paper (hep-th/0509067) using matrix model, we showed that closed string tachyons can resolve spacelike singularity in one particular class of Misner space (with anti-periodic boundary conditions for fermions around the spatial circle). In this note, we show that for Misner space without closed string tachyons, there also exists a mechanism to resolve the singularity in the context of the matrix model, namely cosmological winding string production. We show that here space and time also become noncommutative due to these winding strings. Employing optical theorem, we study the bulk boundary coupling by calculating the four-open-string cylinder amplitudes.Comment: 16 pages, no figures, harvmac; references added; added a section of discussion on disk and cylinder amplitude

    Vortex Reconnection as the Dissipative Scattering of Dipoles

    Full text link
    We propose a phenomenological model of vortex tube reconnection at high Reynolds numbers. The basic picture is that squeezed vortex lines, formed by stretching in the region of closest approach between filaments, interact like dipoles (monopole-antimonopole pairs) of a confining electrostatic theory. The probability of dipole creation is found from a canonical ensemble spanned by foldings of the vortex tubes, with temperature parameter estimated from the typical energy variation taking place in the reconnection process. Vortex line reshuffling by viscous diffusion is described in terms of directional transitions of the dipoles. The model is used to fit with reasonable accuracy experimental data established long ago on the symmetric collision of vortex rings. We also study along similar lines the asymmetric case, related to the reconnection of non-parallel vortex tubes.Comment: 8 pages, 3 postscript figure

    Improved 3D thinning algorithms for skeleton extraction

    Full text link
    In this study, we focused on developing a novel 3D Thinning algorithm to extract one-voxel wide skeleton from various 3D objects aiming at preserving the topological information. The 3D Thinning algorithm was testified on computer-generated and real 3D reconstructed image sets acquired from TEMT and compared with other existing 3D Thinning algorithms. It is found that the algorithm has conserved medial axes and simultaneously topologies very well, demonstrating many advantages over the existing technologies. They are versatile, rigorous, efficient and rotation invariant.<br /
    corecore