42 research outputs found

    Bacterial Flagella: Twist and Stick, or Dodge across the Kingdoms

    Get PDF
    The flagellum organelle is an intricate multiprotein assembly best known for its rotational propulsion of bacteria. However, recent studies have expanded our knowledge of other functions in pathogenic contexts, particularly adherence and immune modulation, e.g., for Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa, and Escherichia coli. Flagella-mediated adherence is important in host colonisation for several plant and animal pathogens, but the specific interactions that promote flagella binding to such diverse host tissues has remained elusive. Recent work has shown that the organelles act like probes that find favourable surface topologies to initiate binding. An emerging theme is that more general properties, such as ionic charge of repetitive binding epitopes and rotational force, allow interactions with plasma membrane components. At the same time, flagellin monomers are important inducers of plant and animal innate immunity: variation in their recognition impacts the course and outcome of infections in hosts from both kingdoms. Bacteria have evolved different strategies to evade or even promote this specific recognition, with some important differences shown for phytopathogens. These studies have provided a wider appreciation of the functions of bacterial flagella in the context of both plant and animal reservoirs

    Acylcarnitines participate in developmental processes associated to lipid metabolism in plants.

    No full text
    International audienceThe non-proteinaceous amino acid carnitine exists in plants either as a free form or esterified to fatty acids. To clarify the biological significance of acylcarnitines in plant lipid metabolism, we have analyzed their content in plant extracts using an optimized tandem mass spectrometry coupled to liquid chromatography method. We have studied different developmental processes (post-germination, organogenesis, embryogenesis) targeted for their high requirement for lipid metabolism. The modulation of the acylcarnitine content was compared to that of the lipid composition and lipid biosynthetic gene expression level in the analyzed materials. Arabidopsis mutants were also studied based on their alteration in de novo fatty acid partitioning between the prokaryotic and eukaryotic pathways of lipid biosynthesis. We show that acylcarnitines cannot specifically be associated to triacylglycerol catabolism but that they are also associated to anabolic pathways of lipid metabolism. They are present during membrane and storage lipid biosynthesis processes. A great divergence in the relative contents of acylcarnitines as compared to the corresponding acyl-CoAs suggests that acylcarnitines are associated to very specific process(es) of lipid metabolism. The nature of their involvement as the transport form of activated fatty acids or in connection with the management of acyl-CoA pools is discussed. Also, the occurrence of medium-chain entities suggests that acylcarnitines are associated with additional lipid processes such as protein acylation for instance. This work strengthens the understanding of the role of acylcarnitines in plant lipid metabolism, probably in the management of specific acyl-CoA pools

    Alternate thermoregulation and functional binding of Escherichia coli Type 1 fimbriae in environmental and animal isolates

    No full text
    Type 1 fimbriae (T1F) are well characterised cell surface organelles expressed by Escherichia coli and required for adherence to mannosylated host tissue. They satisfy molecular Koch's postulates as a virulence determinant and a host-adapted role has been reinforced by reports that T1F expression is repressed at sub-mammalian temperatures. Analysis of a group of 136 environmental and animal E. coli isolates that express T1F at 37 °C showed that 28% are also capable of expression at 20 °C, in a phase variable manner. The heterogeneous proportions varied widely, and although growth temperature impacted the total proportion expressing T1F, there was no direct correlation between growth at 37 and 20 °C, indicative of differences in thermoregulation of the genetic switch (fimS) that controls phase variation. Specificities of the adhesin (FimH) also varied between the isolates: most bound to α-(1-3) mannan and yeast extracts as expected, but some recognised β-(1-4)-mannans and N-linked glycoproteins from plants, and T1F from two of the isolates mediated binding to plant roots. The results expand our view of a well described adherence factor to show alternative expression profiles and adhesin specificities, which in turn may confer an advantage for certain isolates in alternative hosts and habitats

    A variant form of the human Deleted in Malignant Brain Tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3)

    Get PDF
    The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1(gp340). Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6) reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1(gp340) positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p<0.0001) and Crohn's disease (p?=?0.006) compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn's disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn's disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1(gp340) and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1(gp340) bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p<0.0001) but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease

    Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion

    No full text
    The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. Therefore, posttranslational methylation of flagellin facilitates adhesion of Salmonella Typhimurium to hydrophobic host cell surfaces, and contributes to efficient gut colonization and host infectio
    corecore