15,372 research outputs found
Witten effect in a crystalline topological insulator
It has been noted a long time ago that a term of the form theta (e^2/2\pi h)
B dot E may be added to the standard Maxwell Lagrangian without modifying the
familiar laws of electricity and magnetism. theta is known to particle
physicists as the 'axion' field and whether or not it has a nonzero expectation
value in vacuum remains a fundamental open question of the Standard Model. A
key manifestation of the axion term is the Witten effect: a unit magnetic
monopole placed inside a medium with non-zero theta is predicted to bind a
(generally fractional) electric charge -e(theta/2 pi+n) with n integer. Here we
conduct a first test of the Witten effect, based on the recently established
fact that the axion term with theta=pi emerges naturally in the description of
the electromagnetic response of a new class of crystalline solids called
topological insulators - materials distinguished by strong spin-orbit coupling
and non-trivial band structure. Using a simple physical model for a topological
insulator, we demonstrate the existence of a fractional charge bound to a
monopole by an explicit numerical calculation. We also propose a scheme for
generating an 'artificial' magnetic monopole in a topological insulator film,
that may be used to facilitate the first experimental test of Witten's
prediction.Comment: 7 pages, 2 figures. Version to appear in PRB; minor changes,
discussion of several issues expande
TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination
Contribution of Matrix Metalloproteinase-9 to Cerebral Edema and Functional Outcome following Experimental Subarachnoid Hemorrhage
Background: Cerebral edema is an important risk factor for death and poor outcome following subarachnoid hemorrhage (SAH). However, underlying mechanisms are still poorly understood. Matrix metalloproteinase (MMP)-9 is held responsible for the degradation of microvascular basal lamina proteins leading to blood-brain barrier dysfunction and, thus, formation of vasogenic cerebral edema. The current study was conducted to clarify the role of MMP-9 for the development of cerebral edema and for functional outcome after SAH. Methods: SAH was induced in FVB/N wild-type (WT) or MMP-9 knockout (MMP-9(-/-)) mice by endovascular puncture. Intracranial pressure (ICP), regional cerebral blood flow (rCBF), and mean arterial blood pressure (MABP) were continuously monitored up to 30 min after SAH. Mortality was quantified for 7 days after SAH. In an additional series neurological function and body weight were assessed for 3 days after SAH. Subsequently, ICP and brain water content were quantified. Results: Acute ICP, rCBF, and MABP did not differ between WT and MMP-9(-/-) mice, while 7 days' mortality was lower in MMP-9(-/-) mice (p = 0.03; 20 vs. 60%). MMP-9(-/-) mice also exhibited better neurological recovery, less brain edema formation, and lower chronic ICP. Conclusions: The results of the current study suggest that MMP-9 contributes to the development of early brain damage after SAH by promoting cerebral edema formation. Hence, MMP-9 may represent a novel molecular target for the treatment of SAH. Copyright (C) 2011 S. Karger AG, Base
Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al,Ga)As lasers
Broad area graded‐index separate‐confinement heterostructure single quantum well lasers grown by molecular‐beam epitaxy (MBE) with threshold current density as low as 93 A/cm^2 (520 μm long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A cw threshold current of 0.55 mA was obtained for a laser with facet reflectivities of ∼80%, a cavity length of 120 μm, and an active region stripe width of 1 μm. These devices driven directly with logic level signals have switch‐on delays <50 ps without any current prebias. Such lasers permit fully on–off switching while at the same time obviating the need for bias monitoring and feedback control
Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions
We examine the effect of accuracy of high-order spectral element methods,
with or without adaptive mesh refinement (AMR), in the context of a classical
configuration of magnetic reconnection in two space dimensions, the so-called
Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point
of the velocity. A recently developed spectral-element adaptive refinement
incompressible magnetohydrodynamic (MHD) code is applied to simulate this
problem. The MHD solver is explicit, and uses the Elsasser formulation on
high-order elements. It automatically takes advantage of the adaptive grid
mechanics that have been described elsewhere in the fluid context [Rosenberg,
Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows
both statically refined and dynamically refined grids. Tests of the algorithm
using analytic solutions are described, and comparisons of the Orszag-Tang
solutions with pseudo-spectral computations are performed. We demonstrate for
moderate Reynolds numbers that the algorithms using both static and refined
grids reproduce the pseudo--spectral solutions quite well. We show that
low-order truncation--even with a comparable number of global degrees of
freedom--fails to correctly model some strong (sup--norm) quantities in this
problem, even though it satisfies adequately the weak (integrated) balance
diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic
Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons
We propose an efficient phase-encoding quantum secret key generation scheme
with heralded narrow-band single photons. The key information is carried by the
phase modulation directly on the single-photon temporal waveform without using
any passive beam splitters or optical switches. We show that, when the
technique is applied to the conventional fiber-based phase-encoding BB84 and
differential phase shift (DPS) quantum key distribution schemes, the key
generation efficiencies can be improved by a factor of 2 and 3, respectively.
For N(>3)-period DPS systems, the key generation efficiency can be improved by
a factor of N. The technique is suitable for quantum memory-based long-distance
fiber communication system.Comment: 5 pages, 5 figure
- …