113 research outputs found

    [La alianza y estrecho lazo que une las ciencias divinas y las humanas]

    Get PDF
    Copia digital. España : Ministerio de Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 2020Tít. tomado de la p. 6

    miR-125b Acts as a Tumor Suppressor in Breast Tumorigenesis via Its Novel Direct Targets ENPEP, CK2-α, CCNJ, and MEGF9

    Get PDF
    MicroRNAs (miRNAs) play important roles in diverse biological processes and are emerging as key regulators of tumorigenesis and tumor progression. To explore the dysregulation of miRNAs in breast cancer, a genome-wide expression profiling of 939 miRNAs was performed in 50 breast cancer patients. A total of 35 miRNAs were aberrantly expressed between breast cancer tissue and adjacent normal breast tissue and several novel miRNAs were identified as potential oncogenes or tumor suppressor miRNAs in breast tumorigenesis. miR-125b exhibited the largest decrease in expression. Enforced miR-125b expression in mammary cells decreased cell proliferation by inducing G2/M cell cycle arrest and reduced anchorage-independent cell growth of cells of mammary origin. miR-125b was found to perform its tumor suppressor function via the direct targeting of the 3'-UTRs of ENPEP, CK2-alpha, CCNJ, and MEGF9 mRNAs. Silencing these miR-125b targets mimicked the biological effects of miR-125b overexpression, confirming that they are modulated by miR-125b. Analysis of ENPEP, CK2-alpha, CCNJ, and MEGF9 protein expression in breast cancer patients revealed that they were overexpressed in 56%, 40-56%, 20%, and 32% of the tumors, respectively. The expression of ENPEP and CK2-alpha was inversely correlated with miR-125b expression in breast tumors, indicating the relevance of these potential oncogenic proteins in breast cancer patients. Our results support a prognostic role for CK2-alpha, whose expression may help clinicians predict breast tumor aggressiveness. In particular, our results show that restoration of miR-125b expression or knockdown of ENPEP, CK2-alpha, CCNJ, or MEGF9 may provide novel approaches for the treatment of breast cancer

    Activin B Promotes Epithelial Wound Healing In Vivo through RhoA-JNK Signaling Pathway

    Get PDF
    Background: Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated. Principal Findings: In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 59-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing. Conclusion: These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock

    Linkage map construction involving a reciprocal translocation

    Get PDF
    This paper is concerned with a novel statistical–genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to ‘pseudo-linkage’: the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the “pseudo-linkage” using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation

    How Trade and Investment Agreements Affect Bilateral Foreign Direct Investment: Results from a Structural Gravity Model

    Get PDF
    The paper develops a new stand-alone structural gravity model for explaining bilateral FDI patterns. We employ the model to analyse the impact of preferential trade agreements (PTAs), bilateral investment treaties (BITs) and other policies on bilateral foreign direct investment (FDI). We use the UNCTAD global database on bilateral FDI stocks and flows. To control for the heterogeneous nature of PTAs, we employ two different indicators of PTA depth. We find that on average signing a PTA increases bilateral FDI stocks by around 30%. Nevertheless, we also find that ‘deeper’ or comprehensive PTAs (e.g., including provisions on investment, public procurement and intellectual property rights provisions) do not have a significantly different impact than signing regular PTAs. Belonging to the EU single market, on the other hand, has a strong impact and increases bilateral FDI by around 135%, and signing a BIT has an effect that is comparable to signing a PTA
    corecore