931 research outputs found

    The GL-l.u.st.\ constant and asymmetry of the Kalton-Peck twisted sum in finite dimensions

    Full text link
    We prove that the Kalton-Peck twisted sum Z2nZ_2^n of nn-dimensional Hilbert spaces has GL-l.u.st.\ constant of order logn\log n and bounded GL constant. This is the first concrete example which shows different explicit orders of growth in the GL and GL-l.u.st.\ constants. We discuss also the asymmetry constants of Z2nZ_2^n

    Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints

    Full text link
    We consider an inextensible, semiflexible polymer or worm-like chain which is confined in the transverse direction by a parabolic potential and subject to a longitudinal force at the ends, so that the polymer is stretched out and backfolding is negligible. Simple analytic expressions for the partition function, valid in this regime, are obtained for chains of arbitrary length with a variety of boundary conditions at the ends. The spatial distribution of the end points or radial distribution function is also analyzed.Comment: 14 pages including figure

    Statics and dynamics of single DNA molecules confined in nanochannels

    Get PDF
    The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the polymer physics

    Amplified stretch of bottlebrush-coated DNA in nanofluidic channels

    Get PDF
    The effect of a cationic-neutral diblock polypeptide on the conformation of single DNA molecules confined in rectangular nanochannels is investigated with fluorescence microscopy. An enhanced stretch along the channel is observed with increased binding of the cationic block of the polypeptide to DNA. A maximum stretch of 85% of the contour length can be achieved inside a channel with a cross-sectional diameter of 200 nm and at a 2-fold excess of polypeptide with respect to DNA charge. With site-specific fluorescence labelling, it is demonstrated that this maximum stretch is sufficient to map large-scale genomic organization. Monte Carlo computer simulation shows that the amplification of the stretch inside the nanochannels is owing to an increase in bending rigidity and thickness of bottlebrush-coated DNA. The persistence lengths and widths deduced from the nanochannel data agree with what has been estimated from the analysis of atomic force microscopy images of dried complexes on silica.Singapore-MIT Alliance for Research and TechnologyNational Science Foundation (U.S.

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance xx^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as xND11/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties

    Full text link
    Advanced Monte Carlo simulations are used to study the effect of nano-slit confinement on metric and topological properties of model DNA chains. We consider both linear and circularised chains with contour lengths in the 1.2--4.8 μ\mum range and slits widths spanning continuously the 50--1250nm range. The metric scaling predicted by de Gennes' blob model is shown to hold for both linear and circularised DNA up to the strongest levels of confinement. More notably, the topological properties of the circularised DNA molecules have two major differences compared to three-dimensional confinement. First, the overall knotting probability is non-monotonic for increasing confinement and can be largely enhanced or suppressed compared to the bulk case by simply varying the slit width. Secondly, the knot population consists of knots that are far simpler than for three-dimensional confinement. The results suggest that nano-slits could be used in nano-fluidic setups to produce DNA rings having simple topologies (including the unknot) or to separate heterogeneous ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure

    The troubled relationship between architecture and aesthetic: exploring the self and emotional beauty in design

    Get PDF
    As its title informs us, this research has a double agenda: investigating the troubled relationship between architecture and its generated aesthetic since the early 1940s when the Self was repressed - the Eye and the ‘I’ - as well as exploring, through my test-bed project, a design process where feelings and emotions are an integral part. My research is an investigation into what seems to be a great paradox within architectural discourse. While good architecture or brilliant buildings tend to be judged by their capacity to produce an aesthetic experience, many architects claim they generate architecture in response to rational utilitarian issues, often insisting on removing themselves as personalities from the design process. This down-plays the direct relationship between personal judgement and visual discrimination, a position which has broader cultural implications. After a short decade (1977-88) of free imagination, lateral thinking and celebrating the Self, from the late 1980s the intellectualisation and further rationalisation of the architectural design process came again to the fore and became an authorial voice substituting the Self by introducing either philosophy, math or both to the design process. Investigating this troubled relationship took place alongside exploring the creation of an emotional environment within the architectural context; ways in which space becomes emotionally charged. G. Bachelard’s exposition of issues contained within poetry teaches us that like poetry, visual poetic images might release people into reverie, the state of mind in which the eidetic memory is accessed. The wonder and beauty of nature is a constant reminder of wonderful possibilities - with great relevance to architecture. My intention is not to depict or describe nature, but to evoke human emotions (as nature does) through the architectural spaces that I design. Using and evoking poetic images in the design process forming the preludes to emotive architecture. Spatial-Depth or Depth–Scape were two equivalent terms I coined for a new architectural spatial pursuit; it is the spatial-depth quality and effect that I explored which I believe is the aspect of my research that is a contribution to the field of architectural design. A new spatial concept and a new architectural language that substitutes the ubiquitous and already old Modern planar architecture. Opposed to the prevalent topological surface, with continuous and consistent skins, an exuberant ‘inside-out’, complex three dimensionally with an enhanced depth to be inhabited or involved with at close distance. A new spatial quality engulfed with emotional triggers such as the manifold silhouettes in the interactive time-cycled Light and Acoustic Installation - an emotional beauty. For architecture, aesthetics has the power to synthesise poetic and emotional values and at the same time give coherence to the design itself
    corecore