71 research outputs found

    Early Treatment with Fumagillin, an Inhibitor of Methionine Aminopeptidase-2, Prevents Pulmonary Hypertension in Monocrotaline-Injured Rats

    Get PDF
    Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients

    A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer.

    Get PDF
    Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10-13 cm3 molecule-1 s-1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10-13 cm3 molecule-1 s-1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m-2 d-1 for CH2I2 and 3.7 +/- 0.8 nmol m-2 d-1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2-4 × 10-13 cm3 molecule-1 s-1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.LJC acknowledges NERC (NE/J00619X/1) and the National Centre for Atmospheric Science (NCAS) for funding. The laboratory work was supported by the NERC React-SCI (NE/K005448/1) and RONOCO (NE/F005466/1) grants.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s10874-015-9320-

    Prolyl-4-hydroxylase Α subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS)

    Get PDF
    © 2018, Cancer Research UK. Background: Extracellular matrix (ECM) plays a crucial role in tumour behaviour. Prolyl-4-hydroxlase-A2 (P4HA2) is a key enzyme in ECM remodelling. This study aims to evaluate the prognostic significance of P4HA2 in breast ductal carcinoma in situ (DCIS). Methods: P4HA2 expression was assessed immunohistochemically in malignant cells and surrounding stroma of a large DCIS cohort comprising 481 pure DCIS and 196 mixed DCIS and invasive carcinomas. Outcome analysis was evaluated using local recurrence free interval (LRFI). Results: High P4HA2 expression was detected in malignant cells of half of pure DCIS whereas its expression in stroma was seen in 25% of cases. Higher P4HA2 expression was observed in mixed DCIS cases compared to pure DCIS both in tumour cells and in stroma. High P4HA2 was associated with features of high risk DCIS including younger age, higher grade, comedo necrosis, triple negative and HER2-positive phenotypes. Interaction between P4HA2 and radiotherapy was also observed regarding the outcome. High P4HA2 expression was an independent prognostic factor in predicting shorter LRFI. Conclusion: P4HA2 plays a role in DCIS progression and can potentially be used to predict DCIS outcome. Incorporation of P4HA2 with other clinicopathological parameters could refine DCIS risk stratification that can potentially guide management decisions

    Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats

    Get PDF
    The renin–angiotensin system (RAS) is involved in the pathogenesis of insulin sensitivity (IS). The role of RAS in insulin resistance and muscular circulation has yet to be elucidated. Therefore, this study sought to determine the mechanisms of angiotensin II receptor blockers (ARBs) and/or diuretics on IS and capillary density (CD) in fructose-fed rats (FFRs). Sprague-Dawley rats were fed either normal chow (control group) or fructose-rich chow for 8 weeks. For the last 4 weeks, FFRs were allocated to four groups: an FFR group and groups treated with the thiazide diuretic hydrochlorothiazide (HCTZ), with the ARB losartan, or both. IS was evaluated by the euglycemic hyperinsulinemic glucose clamp technique at week 8. In addition, CD in the extensor digitorum longus muscle was evaluated. Blood pressure was significantly higher in the FFRs than in the controls. HCTZ, losartan and their combination significantly lowered blood pressure. IS was significantly lower in the FFR group than in the controls and was even lower in the HCTZ group. Losartan alone or combined with HCTZ significantly increased IS. In all cases, IS was associated with muscular CD, but not with plasma adiponectin or lipids. These results indicate that losartan reverses HCTZ-exacerbated insulin resistance, which can be mediated through the modulation of muscular circulation in rats with impaired glucose metabolism

    Association of circulating angiotensin converting enzyme activity with respiratory muscle function in infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin converting enzyme (ACE) gene contains a polymorphism, consisting of either the presence (I) or absence (D) of a 287 base pair fragment. Deletion (D) is associated with increased circulating ACE (cACE) activity. It has been suggested that the D-allele of ACE genotype is associated with power-oriented performance and that cACE activity is correlated with muscle strength. Respiratory muscle function may be similarly influenced. Respiratory muscle strength in infants can be assessed specifically by measurement of the maximum inspiratory pressure during crying (Pi<sub>max</sub>). Pressure-time index of the respiratory muscles (PTImus) is a non-invasive method, which assesses the load to capacity ratio of the respiratory muscles.</p> <p>The objective of this study was to determine whether increased cACE activity in infants could be related to greater respiratory muscle strength and to investigate the potential association of cACE with PTImus measurements as well as the association of ACE genotypes with cACE activity and respiratory muscle strength in this population.</p> <p>Methods</p> <p>Serum ACE activity was assayed by using a UV-kinetic method. ACE genotyping was performed by polymerase chain reaction amplification, using DNA from peripheral blood. PTImus was calculated as (Pi<sub>mean</sub>/Pi<sub>max</sub>) × (Ti/Ttot), where Pi<sub>mean </sub>was the mean inspiratory pressure estimated from airway pressure, generated 100 milliseconds after an occlusion (P<sub>0.1</sub>), Pi<sub>max </sub>was the maximum inspiratory pressure and Ti/Ttot was the ratio of the inspiratory time to the total respiratory cycle time. Pi<sub>max </sub>was the largest pressure generated during brief airway occlusions performed at the end of a spontaneous crying effort.</p> <p>Results</p> <p>A hundred and ten infants were studied. Infants with D/D genotype had significantly higher serum ACE activity than infants with I/I or I/D genotypes. cACE activity was significantly related to Pi<sub>max </sub>and inversely related to PTImus. No association between ACE genotypes and Pdi<sub>max </sub>measurements was found.</p> <p>Conclusions</p> <p>These results suggest that a relation in cACE activity and respiratory muscle function may exist in infants. In addition, an association between ACE genotypes and cACE activity, but not respiratory muscle strength, was demonstrated.</p

    A Concerted HIF-1α/MT1-MMP Signalling Axis Regulates the Expression of the 3BP2 Adaptor Protein in Hypoxic Mesenchymal Stromal Cells

    Get PDF
    Increased plasticity, migratory and immunosuppressive abilities characterize mesenchymal stromal cells (MSC) which enable them to be active participants in the development of hypoxic solid tumours. Our understanding of the oncogenic adaptation of MSC to hypoxia however lacks the identification and characterization of specific biomarkers. In this study, we assessed the hypoxic regulation of 3BP2/SH3BP2 (Abl SH3-binding protein 2), an immune response adaptor/scaffold protein which regulates leukocyte differentiation and motility. Gene silencing of 3BP2 abrogated MSC migration in response to hypoxic cues and generation of MSC stably expressing the transcription factor hypoxia inducible factor 1alpha (HIF-1α) resulted in increased endogenous 3BP2 expression as well as cell migration. Analysis of the 3BP2 promoter sequence revealed only one potential HIF-1α binding site within the human but none in the murine sequence. An alternate early signalling cascade that regulated 3BP2 expression was found to involve membrane type-1 matrix metalloproteinase (MT1-MMP) transcriptional regulation which gene silencing abrogated 3BP2 expression in response to hypoxia. Collectively, we provide evidence for a concerted HIF-1α/MT1-MMP signalling axis that explains the induction of adaptor protein 3BP2 and which may link protein binding partners together and stimulate oncogenic MSC migration. These mechanistic observations support the potential for malignant transformation of MSC within hypoxic tumour stroma and may contribute to evasion of the immune system by a tumour

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease
    corecore