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ABSTRACT  

Background: Extracellular matrix (ECM) plays a crucial role in tumour behaviour. 

Prolyl-4-hydroxlase-A2 (P4HA2) is a key enzyme in ECM remodelling. This study aims to 

evaluate the prognostic significance of P4HA2 in breast ductal carcinoma in situ (DCIS).  

Methods: P4HA2 expression was assessed immunohistochemically in malignant cells and 

surrounding stroma of a large DCIS cohort comprising 481 pure DCIS and 196 mixed 

DCIS and invasive carcinomas. Outcome analysis was evaluated using local recurrence 

free interval (LRFI).  

Results: High P4HA2 expression was detected in malignant cells of half of pure DCIS 

whereas its expression in stroma was seen in 25% of cases. Higher P4HA2 expression 

was observed in mixed DCIS cases compared to pure DCIS both in tumour cells and in 

stroma. High P4HA2 was associated with features of high risk DCIS including younger 

age, higher grade, comedo necrosis, triple negative and HER2-positive phenotypes. 

Interaction between P4HA2 and radiotherapy was also observed regarding the outcome. 

High P4HA2 expression was an independent prognostic factor in predicting shorter LRFI. 

Conclusion: P4HA2 plays a role in DCIS progression and can potentially be used to 

predict DCIS outcome. Incorporation of P4HA2 with other clinicopathological parameters 

could refine DCIS risk stratification that can potentially guide management decisions. 
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INTRODUCTION  
Currently, determination of behaviour and proper management of DCIS depends on 

conventional clinicopathological parameters including patient age, nuclear grade, mode 

of disease presentation either symptomatic or screen detected, tumour size and 

presence of comedo type necrosis 1,2. Despite the prognostic value of these factors, they 

remain insufficient to define risk of progression precisely. Moreover, these parameters 

classify more than 50% of DCIS in the high-risk group, however the recurrence rate is 

currently around 15% with half of these being invasive 3. Therefore, a considerable 

percentage of DCIS patients are either over- or under-treated 4. Molecular 

characterisation based on hormonal receptors and HER2 status in addition to recently 

described multigene assays, such as Oncotype DX DCIS score, have shown promising 

results to refine DCIS prognostic classification but the value of their application in 

routine practice remains unclear 5-9. 

The role of the DCIS microenvironment and the crosstalk between intraductal malignant 

epithelial cells and the various components of the extra-ductal structures in the 

progression of DCIS to invasive disease is undeniable 10-14. However, previous studies 

have indicated that the precise role of proteolytic enzymes in the extracellular matrix 

(ECM), such as matrix metalloproteinases (MMPs), in predicting risk of development of 

local recurrence is unreliable and trials for blocking these enzymes to limit tumour 

progression showed disappointing results 15,16.  

Collagen is the main constituent of ECM and usually forms a network around tumour 

cells 17. Collagen biosynthesis is a multistep process with several post-translational 

modifications. Prolyl-4-hydroxylases catalyse the formation of 4-hydroxyproline, which is 

essential for collagen triple helix formation and fibre stabilisation 18. Increased P4HA2 

expression has been detected in many solid tumours, including oral cavity squamous cell 

carcinoma 19, papillary thyroid cancer 20, and invasive breast carcinoma (IBC) 21. 

Interestingly, P4HA2 is differentially expressed between normal breast tissue and IBC 

22,23. However, to the best of our knowledge, no previous study has addressed the role of 

P4HA2 in DCIS progression and its prognostic impact. In this study, we aimed to assess 
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the expression of P4HA2 in a large cohort of DCIS to evaluate its clinicopathological and 

prognostic significance.  

MATERIAL AND METHODS 

Study Cohort  

This study was carried out on a consecutive series of 776 primary pure DCIS cases 

diagnosed between 1990 to 2012 at Nottingham City Hospital, Nottingham, United 

Kingdom (UK). Supplementary Table 1 summarises the clinicopathological parameters of 

the study cohort. A series of 239 cases diagnosed as synchronous DCIS and IBC (DCIS-

mixed) was also collected as a comparison set. The latter was selected with 

clinicopathological features comparable to the pure cohort to avoid any selection bias 

(Supplementary Table 1). Patients’ demographic data, histopathological parameters, 

management including post-operative radiotherapy (RT) and development of local 

recurrence were collected. Local recurrence free interval (LRFI) was defined as the time 

(in months) between 6 months after the first DCIS surgery and occurrence of ipsilateral 

local recurrence (either as DCIS or IBC with or without ipsilateral nodal metastasis). 

Cases that underwent completion re-excision surgery within the first 6 months of the 

primary operation were not considered as recurrence. Patients developed contralateral 

disease following DCIS diagnosis were censored at the time of development of the 

contralateral cancer. Within a median follow up period of 103 months (range 6-331), 83 

cases (11%) developed a recurrence in the pure DCIS cohort compromising 30 DCIS 

(36%) and 53 IBC with or without DCIS (64%). Six recurrence events were developed 

after mastectomy and 11 events after management with breast conserving surgery 

(BCS) followed by adjuvant RT while the majority of the recurrences (n=66) occurred 

after BCS alone.   

Immunohistochemistry 

Tissue microarrays (TMAs) were prepared from DCIS cohorts. The TMA was constructed 

using a TMA GRAND MASTER 2.4-UG-EN MACHINE, using 1 mm punch sets. Cases with 

heterogeneous growth patterns or grades were sampled from all representative areas. 

For mixed cohort, a separate TMA from each component (DCIS and IBC) was 
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constructed. In addition, whole tissue sections from 12 cases compromising 8 pure DCIS 

and 4 DCIS-mixed cases were assessed to evaluate heterogeneity and the pattern of 

P4HA2 expression in malignant breast tissue and adjacent normal tissue. 

Primary antibody specificity for mouse monoclonal P4HA2 antibody [CL0351, ab211527, 

Abcam, UK] was validated using Western Blot on whole cell lysates of MCF7, MDA-

MB-231 and SKBR3 human breast cancer cell lines (obtained from the American Type 

Culture Collection; Rockville, MD, USA) as previously described 21-23. P4HA2 is expressed 

by epithelial tumour cells and specifically breast cancer cell lines as reported in Gilkes et 

al., Pan et al., and Xiong et al. 21-23, hence these cell lines were used. P4HA2 antibody 

was used at a dilution of 1:500 which showed a single specific band at the predicted size 

of 61 KDa (Figure 1A).  

Expression of P4HA2 protein in DCIS was assessed by immunohistochemistry (IHC) 

using the Novocastra Novolink TM Polymer Detection Systems kit (Code: RE7280-K, 

Leica, Biosystems, UK). TMA and full-face sections (4 µm) were stained with mouse 

monoclonal P4HA2 (dilution 1:100), incubated for 16 hours. Skin tissue was used as a 

positive control while a cerebral cortex tissue section was used as a negative control. 

For molecular characterisation of the DCIS cohort, immunohistochemical staining of 

oestrogen receptor (ER) progesterone receptor (PR) and HER2 was carried out on the 

TMA sections (4 µm). For ER and PR, sections were stained on the Ventana Benchmark® 

ULTRA system (Tucson, Arizona, USA) using Ventana anti-ER (SP1) Rabbit Monoclonal 

Primary Antibody and anti-PR (1E2) Rabbit Monoclonal Primary Antibody as per the 

recommended protocol. The primary antibody was applied for 16 minutes at 37°C 

followed by the OptiView HQ Linker for 8 minutes and the OptiView HRP Multimer for 8 

minutes. Cases with nuclear staining of more than 1% of the tumour cells were 

considered positive. HER2 status was assessed using IHC staining (1:400, DAKO, no 

antigen retrieval) with HercepTest scoring method as previously published 24,25. 

Chromogenic in situ Hybridisation (CISH) was used to assess the HER2 gene 

amplification to determine the final status of HER2 within equivocal cases. HER2 gene 

amplification was deemed positive where there were six or more signals per nucleus or 
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when clusters were identified in the tumour cell nuclei in more than 50% of tumour cells 

26. Moreover, as hypoxia is reported to be the key driver for P4HA2 upregulation 27, the 

pure DCIS cohort was stained and scored for hypoxia inducible factor 1 alpha (HIF-1a) 

[EPR16897, ab179483, Abcam, UK] as previously described 28. 

Scoring of P4HA2 expression  

Cytoplasmic expression of P4HA2 in tumour epithelial cells and the surrounding stromal 

fibroblasts was assessed. Semi-quantitative Histo-score (H-score) was applied for 

cytoplasmic expression of P4HA2 in epithelial cells (staining intensity was multiplied by 

the percentage of representative cells in the tissue for each intensity, producing a range 

of values between 0 and 300) 29. Cores containing <15% tumour epithelial cells and/or 

stroma were excluded from the scoring. All scored cores showed representative areas of 

specialised stroma 30 surrounding the malignant ducts. Cases with multiple cores 

(n=180) were scored and the average was used as a final score. Cytoplasmic expression 

of P4HA2 within the stromal fibroblasts was assessed as percentage of positive cells. 

Determination of the expression intensity within the scanty cytoplasm of the slender 

shaped fibroblasts was challenging; thus, staining intensity was not scored. For mixed 

cohort, we scored each component, DCIS and IBC, separately. The cases were scored by 

2 pathologists using multiheaded microscope. For dichotomisation of protein expression, 

cut-off points for either stromal or epithelial cells expression of P4HA2 were defined 

according to the conducted results from X-tile bioinformatics software (Yale University, 

version 3.6.1) based on LRFI in the pure DCIS cohort 31. High P4HA2 expression within 

tumour epithelial cells was considered when H-score was >40 while expression in >60% 

of the surrounding stromal fibroblasts was considered high expression.  

Analysis of P4HA2 mRNA expression in breast cancer: 

To emphasise the prognostic role of P4HA2 in breast cancer and given the lack of 

published data on the transcriptomic profiles of DCIS, the Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC) cohort 32, which comprises a large 

(n=1980) well characterised cohort of IBC with comprehensive molecular 

characterization was used. P4HA2 normalised gene expression (mRNA) was evaluated as 

a potential prognostic marker in the METABRIC dataset.  
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Statistical analysis 

Statistical analyses were performed using SPSS v21 (Chicago, IL, USA) for Windows. 

Student’s t test and analysis of variance (ANOVA) were used to correlate between P4HA2 

mRNA level as a continuous variable and other clinicopathological parameters in 

METABRIC data. Association with P4HA2 mRNA expression and breast cancer specific 

survival (BCSS) was done using uni- and multi-variate analysis models after 

dichotomisation of expression into high and low based on the median value. Spearman’s 

Rho test was used to correlate between P4HA2 expression with the tumour epithelial and 

stromal cells. Association between P4HA2 expression and clinicopathological parameters 

as well as RT in pure DCIS was performed using Chi-square, Mann Whitney and Kruskal-

Wallis tests. Wilcoxon signed rank test was used to compare the expression of P4HA2 

between DCIS component and invasive component within the DCIS-mixed cases. 

Univariate survival analysis against LRFI was carried out using log rank test and Kaplan 

Meier curves. Multivariate analysis and the interaction between P4HA2 expression and RT 

was analysed using Cox regression model. For all tests, a two-tailed p-value of less than 

0.05 was considered as statistically significant. 
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RESULTS 
Pattern of P4HA2 expression 

The evaluation of full-face tissue sections demonstrated a rather homogenous 

distribution of P4HA2 expression either within the tumour epithelial cells or the 

surrounding specialised stroma especially in cases with homogenous pattern and grade, 

indicating representability of TMAs to assess P4HA2 expression in our cohort. Adjacent 

normal breast terminal ducto-lobular units showed negative or faint cytoplasmic staining 

of P4HA2. Occasional myoepithelial and inflammatory cells in a few cores were also 

stained. When present, P4HA2 was expressed in the cytoplasm of the epithelial tumour 

cells and surrounding fibroblasts.  

After excluding of uninformative cores (they were randomly excluded due to loss of the 

cores during TMA construction or antigen retrieval, folded tissue during processing or 

cores containing <15% tumour cells), the final number of cases suitable for scoring was 

481 in pure DCIS and 196 in DCIS-mixed cohorts. P4HA2 expression showed a unimodal 

distribution. The median H-score for P4HA2 expression was 40 in pure DCIS (range 

0-250), 50 in the DCIS component of mixed cases (range 0-280), and 40 in IBC 

component of the latter (range 0-280). For stromal expression, the median percentage 

of positive stromal cells was 30% in pure DCIS (range 0-95), 55% in the DCIS 

component of mixed cases (range 0-95) and 80% in the invasive component of the latter 

(range 0-95). Within the pure DCIS cohort, high P4HA2 expression was observed in 

247/481 (51.4%) and 121/481 (25.2%) in tumour epithelial and surrounding stromal 

cells; respectively. There was a positive linear correlation between expression of P4HA2 

within the epithelial cells and surrounding fibroblasts (r=0.426, p<0.0001, Spearman’s 

correlation).  

The proportion of cases with high P4HA2 was greater in DCIS-mixed than pure DCIS, 

both within the tumour epithelial cells (54% of pure DCIS cases vs. 64% of DCIS mixed 

with IBC, χ2=8.6, p=0.003) and stromal cells (25% for pure DCIS vs. 50% of DCIS 

mixed with invasion, χ2=39.3, p<0.0001). Supporting this, similar observations results 

were observed when the data had been analysed in a continuous scale (p=0.006 and 
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p<0.0001, for tumour epithelial cells and stromal cells, respectively). Although there was 

no statistically significant difference between P4HA2 expression within the tumour 

epithelial cells of DCIS component and invasive component of DCIS-mixed cases 

(p=0.188), its expression within the stromal fibroblasts surrounding the invasive 

component was higher than those surrounding the DCIS component (p<0.0001). 

Different patterns of P4HA2 expression within the pure DCIS and DCIS-mixed cohorts 

are shown in Figure 1 (B-F). Supplementary Figure 1 shows some examples of P4HA2 

expression around 40 H score.   

Significance of P4HA2 expression in pure DCIS 

High expression of P4HA2 within the malignant epithelial cells and/or surrounding 

stromal fibroblasts in the pure DCIS was associated with various clinicopathological 

parameters characteristic of high risk DCIS (Table 1) including younger age at diagnosis, 

DCIS presented symptomatically, high nuclear grade, presence of comedo necrosis, ER 

negativity, PR negativity, HER2 positivity, and triple negative DCIS. Also, there was a 

positive association between high P4HA2 expression either within tumour epithelial cells 

or stromal cells and high HIF-1a expression. The majority of patients receiving post-

operative adjuvant RT showed high P4HA2 expression as well. Analysis of continuous 

data of P4HA2 expression scores showed comparable results (Supplementary Table 2).   

To validate the prognostic value of P4HA2 in IBC, the METABRIC cohort 32 was used to 

assess the levels of P4HA2 mRNA and correlate its expression with the clinicopathological 

variables and outcome. We considered mRNA expression data to be valid for comparison, 

as The Cancer Genome Atlas data (cBio, Provisional breast cancer data set, obtained 

February 2018) shows that P4HA2 mRNA expression by RNAseq and protein expression 

by mass spectrometry in 70 IBC were significantly positively correlated (p<0.0001, 

Spearman r=0.48). Analysis using the Breast Cancer Gene-Expression Miner v4.1(bc-

GenExMiner v4.1) database showed that high P4HA2 mRNA is associated with higher 

metastatic relapse and/or death (p<0.0001). Similar associations with aggressive 

clinico-pathologic features were observed when evaluating P4HA2 mRNA level in the 

invasive tumours of the METABRIC series (n=1980), for example with high tumour grade 
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(p=0.03), lymph node metastasis (p=0.028), ER negativity (p=0.0001), HER2 positivity 

(p<0.0001) in addition to shorter breast cancer specific survival (BCSS) (HR=1.3, 

95%CI=1.1-1.6, p=0.002). Multivariate analysis showed that higher P4HA2 mRNA level 

was independently associated with shorter BCSS (Supplementary Tables 3, 4 and 

Supplementary Figure 2).   

Outcome analysis in pure DCIS cohort  

High P4HA2 expression within tumour epithelial cells was associated with shorter LRFI in 

the whole cohort of pure DCIS (HR=2.3, 95%CI=1.3-4.1; p=0.003, Figure 2) and in the 

luminal ER-positive/HER2-negative subgroup (HR=3.3, 95%CI=1.1-5.2; p=0.001). 

Association with shorter LRFI was observed in patients treated with BCS without 

adjuvant radiotherapy (RT) (HR=3.6, 95%CI=1.9-7.1; p<0.0001), however; the 

significant association with poor outcome was not maintained in patients treated with 

either mastectomy or BCS followed by adjuvant RT (HR=0.9, 95%CI=0.2-4.8; p=0.9 

and HR=1.8, 95%CI=0.3-9.1; p=0.5, respectively). Interestingly, there was an 

association between high P4HA2 expression and ipsilateral local recurrence as invasive 

disease in patients treated with BCS without post-operative adjuvant RT (HR=2.4, 

95%CI=1.1-5.2; p=0.03) but this associated lost its significance in patients who were 

offered adjuvant RT (Figures 2 and 3).  

To further evaluate the impact of P4HA2 on the outcome in the context of adjuvant RT 

response, the cohort of pure DCIS treated with BCS was stratified based on P4HA2 

expression. In the high P4HA2 expression group, there was a statistically significant 

association between adjuvant RT and longer LRFI (HR=0.3, 95%CI=0.1-0.8; p=0.01). In 

the low P4HA2 expression cohort, this association was lost (HR=0.6, 95%CI=0.1-2.8; 

p=0.5) (Figure 4). The interaction between the combined RT and P4HA2 expression and 

outcome in the cox regression model showed similar results, whereas RT*P4HA2 

expression showed a significant association with outcome (p=0.01, HR=3.4, 

95%CI=1.3-8.7).  

Stromal expression of P4HA2 did not show any significant association with tumour 

recurrence. Forest plots illustrating the association between different clinicopathological 
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parameters and ipsilateral local tumour recurrence are shown in Supplementary Figure 

3a (all recurrences either DCIS or IBC) and Supplementary Figure 3b (invasive 

recurrences only). 

Multivariate survival analysis showed that tumour expression of P4HA2 is a poor 

prognostic factor for tumour recurrence in patients treated with BCS independent of 

known other determinants of high risk DCIS including patient age, nuclear grade, tumour 

size, presence of comedo necrosis and RT in the model (HR=2.3, 95% CI=1.3-4.4; 

p=0.007) (Table 2). 

Furthermore, when patients treated with BCS were stratified based on clinicopathological 

variables into high/intermediate (higher) risk and low risk groups, using the Van Nuys 

Prognostic Index 33, the ipsilateral local recurrence rate was comparable (12% and 10% 

for the higher and low risk groups; respectively). When P4HA2 expression was 

incorporated, the recurrence rate for the higher risk/high P4HA2 group (35% of the final 

cohort; i.e. 168/481 patients) was 16% but only 8% for the higher risk/low P4HA2 

group. Interestingly, the low risk/high P4HA2 group (15% of the final cohort) showed a 

13% ipsilateral local recurrence rate, while the low risk/low P4HA2 group had a 

recurrence rate of 6%. Further categorisation, in context of post-operative RT, showed 

that the recurrence rate in higher risk/high P4HA2 group with no RT is 25% compared to 

6% for higher risk/high P4HA2 patients who received RT. Similarly, there was 19% 

ipsilateral local recurrence rate in low risk/high P4HA2 patients who did not receive RT 

compared to 5% in patients who offered adjuvant RT. The recurrence rate in low risk/low 

P4HA2 group with or without post-operative RT was comparable (3% and 4%, 

respectively). These results indicate that P4HA2 is a promising marker for better DCIS 

risk stratification and hence better personalised management.  
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Discussion 
Despite breakthroughs in various molecular techniques, predictors for DCIS 

aggressiveness remain elusive. Lack of robust prognostic markers is due to lack of 

adequately powered and methodologically sound studies (case-control, unbiased, 

comparison between DCIS that recur as invasive disease versus those do not). DCIS 

progression is a complex process with interaction between tumour cells and 

microenvironment. An explanation of disease progression based exclusively on intrinsic 

tumour cell factors is insufficient, as there is group of low grade DCIS with indolent 

appearance and low proliferation index that yet carries progression potential to IBC 34. In 

contrast, a considerable proportion of high-grade proliferating lesions remain as DCIS 

without progression. Laser-capture microdissection and microarray analysis show that 

whereas thousands of genes are differentially expressed in the epithelium during the 

transition from normal to DCIS, the majority of genes consistently showing differential 

expression from DCIS to IBC are associated with the stromal microenvironment, 

highlighting its profound importance in the development of IBC 12,35-38. It was reported 

that changes in the breast tumour microenvironment are often observed as early as the 

DCIS stage or even earlier, where hyperactive mitogenic signalling in epithelial cells 

results in secretion of many chemokines which modulate the surrounding tissues in a 

paracrine-like action 39,40. In turn, the stromal and epithelial cells participate in reciprocal 

and paracrine-acting signalling loops, which then remodel and condition the ECM and 

promote tumour cell proliferation, maintenance and invasion 12,14,41,42.  

P4HA2 is one of the key regulator enzymes for collagen biosynthesis, stabilisation, ECM 

remodelling and stiffness 18 and has been reported to associate with poor outcome in 

many malignant tumours 19,20,23. Using the METABRIC cohort for robust molecular data in 

a large number of IBC showed associations between aggressive behaviour of IBC and 

higher levels of P4HA2 mRNA. This observation supports our hypothesis that P4HA2 is a 

promising candidate marker for evaluation as studies to decipher its role in DCIS 

behaviour and its association with disease progression have been lacking.  

In our study, we evaluated the pattern of P4HA2 expression either within tumour 

epithelial cells or surrounding fibroblasts in a large annotated cohort of DCIS with long 
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term follow up data. This is the first report of IHC staining for P4HA2 in any human 

breast tumour cohort to our knowledge. High expression of P4HA2 was associated with 

other determinants of high risk DCIS and poor outcome. These associations give insight 

for the potential role of P4HA2 in DCIS behaviour through its action in enhancing stromal 

stiffness and collagen deposition/alignment, which in turn might help in tumour 

aggressiveness 43. Supporting this idea, our results showed that P4HA2 expression is 

higher in DCIS co-existing with invasive carcinoma than pure DCIS, and much higher in 

the stromal fibroblasts surrounding the invasive component. These findings are further 

supported by gene expression profiles that showed P4HA2 mRNA level is higher in IBC 

than DCIS 22,23. Stromal fibroblasts as well as tumour cells can produce P4HA2 and affect 

the surrounding ECM 21. Our data showing strong tumour epithelial cell expression is 

entirely consistent with this report. 

Importantly, our data showed association of higher P4HA2 expression with invasive 

recurrence. In concordance with our findings, thickening and linearisation of collagen 

fibres are often found in areas of active tissue invasion, suggesting their active role in 

facilitating cancer progression 17. Indeed, studies using live imaging have shown that 

cancer cells migrate rapidly in areas enriched in collagen 44. Gilkes et al., reported that 

cancer cell invasion usually occurs with oriented collagen fibres at the tumour-stromal 

interface, and aligned collagen fibres can facilitate cell migration and invasion 21. 

Moreover, in xenograft models a significant amount of aligned collagen fibres is detected 

in the tumours’ invasion margins in a control group compared to the P4HA2-silenced 

group 23. Taken together, DCIS with high P4HA2 expression may have a 

microenvironment supportive of tumour growth and therefore need to be managed 

properly to avoid progression or recurrence. Our study shows that expression of P4HA2 

in the tumour, but not stromal expression, is associated with recurrence a finding that 

might reflect the potential epithelial cell-intrinsic role of early stage tumours in ECM 

remodelling that facilitates tumour progression and the dual role of tumour and stromal 

cells in progression and aggressiveness of advanced tumours. The latter interaction is 

supported by the dramatic increase of P4HA2 expression in stromal cells surrounding the 
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invasive component compared to those surrounding the DCIS component in mixed cases 

or those surrounding pure DCIS. However, further functional studies are highly 

recommended to understand the underlying mechanisms of P4HA2 expression in 

carcinogenesis and tumour progression either from the tumour cells or the surrounding 

stroma.  

Interestingly, our results show that high P4HA2 expression is not associated with 

recurrence in patients treated with postoperative radiotherapy. Moreover, postoperative 

RT is associated with longer LRFI in patients with high P4HA2 than those with low P4HA2 

expression. Taken together, P4HA2 is not only a marker to identify high-risk patients who 

need proper treatment with surgery followed by radiation, but also suggest that adjuvant 

RT provides more benefit in DCIS expressing high levels of P4HA2, which needs further 

investigation to understand the underlying mechanisms.  

Nonetheless, multivariate analysis shows that only RT and P4HA2 expression were 

significant prognostic factors, suggesting P4HA2 may be a more powerful marker of high 

risk than conventional features. Moreover, in our cohort, using the conventional 

clinicopathological features and the previously described Van Nuys Prognostic Index 33 

could not provide a proper DCIS risk stratification in term of disease recurrence, which 

supports the contention that more robust criteria for DCIS risk determination is required. 

Incorporation of P4HA2 with the other clinicopathological factors provided a better 

identification of different risk groups. These findings indicate that P4HA2 is a promising 

marker for better definition of high risk DCIS as well as identification of a group of 

patients with lower risk where radiotherapy could be omitted.   

Although the exact mechanism of how P4HA2 overexpression and subsequent ECM 

remodelling helps in tumour progression is unclear, there are many hints from existing 

data. Deregulation of ECM dynamics can facilitate cellular dedifferentiation and cancer 

stem cell expansion 45,46. Additionally, it disrupts tissue polarity and promotes cellular 

motility and tissue invasion 47. As a result, epithelial cells are directly affected by 

deregulated ECM dynamics, leading to cellular transformation and metastasis 45,47-49.  

Collagen fibre alignment plays a critical role in directing the migration of tumour cells in 
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vivo 50. Moreover, increased stromal stiffness in breast cancer facilitates integrin 

clustering to promote focal adhesions between tumour cells and surrounding stroma, 

which drive invasion 51. Also, it has been shown in xenograft studies that P4HA2 

regulates tumour growth. Silencing of P4HA2 expression or treatment with a P4HA 

inhibitor significantly inhibited cell proliferation and suppressed aggressive phenotypes of 

breast cancer cells in 3D culture, accompanied by reduced deposition of collagen I and 

IV 23.  

A key driver of P4HA2 and other ECM remodelling proteins is hypoxia and related factors, 

mainly HIF-1a 27, supporting our finding that high P4HA2 expression is associated with 

higher levels of HIF-1a. P4HA2 has been reported to co-localise with HIF-1α in peri-

necrotic, i.e. hypoxic, areas within tumours 27,52. The hypoxia pathway has a complex 

role in tumour progression through enhancing angiogenesis, tumour proliferation, 

secretion of growth factors and other proteolytic enzymes 52. Therefore, P4HA2 

overexpression might be a consequence of hypoxia related changes. In addition, hypoxia 

is associated with overexpression of lysyl oxidases, proteins known to promote cell 

invasion by increasing tissue tension and ECM rigidity 23. These results indicate that the 

ECM microenvironment remodelled by cancer cells is critical for cancer progression. 

Conclusion  

ECM remodelling plays a crucial role in tumour progression. P4HA2 might have a 

potential role in DCIS aggressiveness through its regulatory role in collagen biosynthesis 

and enhancing ECM stiffness. Hypoxia and related factors could be the key drivers of 

such pathway. More functional studies to decipher the role of P4HA2 and its mechanism 

of action in DCIS behaviour are warranted. P4HA2 may also be a valuable prognostic 

indicator, particularly in the ER+/HER2- luminal tumours for which a biomarker that 

could prevent over treatment, i.e. avoid radiotherapy, is urgently required.  

Limitations of the study 

This study has been carried out on TMA sections, which might underestimate the role of 

tumour heterogeneity. However, all cases in our cohort were histologically reviewed 
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before TMA construction and used multiple cores for cases with heterogeneous grades or 

morphological patterns. Additionally, staining of some full-face sections was performed 

to assess the pattern of protein distribution and no obvious staining heterogeneity was 

observed. Lack of data for some potential confounders such as family history of breast 

cancer or obesity is also a limitation. Our cohort did not include any patients treated with 

endocrine therapy. Finally, the current study addressed the prognostic significance of 

P4HA2 in DCIS, but more functional mechanistic studies are highly recommended to 

decipher its actual role in carcinogenesis and DCIS progression as well as its interaction 

with radiotherapy. Evaluation the biological and prognostic roles of P4HA2 in larger 

validation cohorts of different DCIS subgroups, for instance, high risk, low risk DCIS, 

patients treated with BCS and adjuvant radiotherapy with long term follow up period 

would provide better understanding for such interaction. 
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Figures Legends: 

Figure 1: Anti-P4HA2 antibody validation and patterns of protein expression. A) Western 
blot of mouse monoclonal anti-P4HA2 antibody showing a single specific band (upper red 
band) at expected molecular weight (61 kDa) in MCF-7, MDA-MB-231 and SKBR3 cell 
lysates. The lower green band represents the beta-actin (positive control) at 42kDa 
molecular weight, B) Normal breast duct (x20) shows faint cytoplasmic staining of 
P4HA2 in the normal epithelial cells. Occasional faint staining in the myoepithelial cells is 
also noticed, C) Negative P4HA2 expression (x40) in a pure DCIS case; D) strong 
expression of P4HA2 in tumour cells and surrounding fibroblasts (x20) in a pure DCIS 
case.  E and F) Expression of P4HA2 in a mixed case (x40) showing almost the same 
intensity within the tumour cells of DCIS component (E) and invasive component (F) 
while expression within the surrounding stromal fibroblasts is higher in invasive 
component (F). 

Figure 2: Kaplan Meier curves show that high expression of P4HA2 within the tumour 
epithelial cells is associated with shorter ipsilateral local recurrence free survival (LRFS) 
in the whole series (A), and in luminal/HER2- subgroup (B). High expression also showed 
an association with shorter LRFI in patients treated with breast conserving surgery (BCS) 
without adjuvant radiotherapy (C) but not in patients treated with breast conserving 
surgery followed by adjuvant radiotherapy (D). 

Figure 3: Kaplan Meier curve shows association between high P4HA2 expression within 
the DCIS malignant epithelial cells and ipsilateral local recurrences as invasive carcinoma 
in patients treated with breast conserving surgery alone (BCS). 

Figure 4: Kaplan Meier curves show association between post-operative adjuvant 
radiotherapy (RT) and recurrence within low and high P4HA2 expression groups; (A) in 
low P4HA2 expression group, (B) longer LRFI in patients treated with RT following breast 
conserving surgery (BCS) in high P4HA2 expression group. 
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Table 1: Correlation between P4HA2 expression in DCIS malignant epithelial cells and 
stromal fibroblasts with different clinicopathological parameters in the pure DCIS cohort  

significant p values are in bold  
P4HA2; prolyl-4-hydroxlase alpha subunit 2, DCIS; ductal carcinoma in situ, HER2; Human epidermal growth 
factor receptor 2, BCS; breast conserving surgery, IBC; invasive breast cancer, HIF1-a; hypoxia inducible factor 
1 alpha.   
*HER2 final status is achieved using combination of IHC and chromogenic in situ hybridisation (CISH). 
**For patients treated with breast conserving surgery. 
***Including the cases in both cohorts; i.e. pure DCIS cohort (n=481) + DCIS-mixed cohort (n=196).   

Parameters

P4HA2 expression in 
tumour epithelial cells

χ2 
(p-value)

P4HA2 expression in stromal 
fibroblasts

χ2 
(p-value)Low 

(N=234) 

N. (%)

High 
(N=247) 

N. (%)

Low 
(N=360) 

N. (%)

High 
(n=121) 

N. (%)

Patient Age 
   ≤45 years 
   >45 years

18 (8) 
216 (92)

40 (16) 
207 (84)

8.2 
(0.004)

38 (11) 
322 (89)

20 (17) 
101 (83)

3.0 
(0.081)

DCIS Presentation  
   Screening 
   Symptomatic

126 (54) 
108 (46)

112 (45) 
135 (55)

3.5 
(0.062)

189 (53) 
171 (47)

49 (40) 
72 (60)

5.2 
(0.020)

DCIS Size 
   ≤20mm 
   >20mm

103 (44) 
130 (56)

101 (41) 
144 (59)

0.4 
(0.510)

158 (44) 
200 (56)

46 (38) 
74 (62)

1.2 
(0.266)

DCIS Nuclear Grade 
   Low 
   Moderate 
   High

51 (22) 
73 (31) 
110 (47)

10 (4) 
52 (21) 
185 (75)

49.4 
(<0.0001)

52 (14) 
98 (27) 
210 (59)

9 (7) 
27 (22) 
85 (71)

6.4 
(0.04)

Comedo necrosis  
   Yes 
   No

130 (56) 
104 (44)

191 (77) 
56 (23)

25.6 
(<0.0001)

226 (63) 
134 (37)

95 (79) 
26 (21)

10.1 
(0.001)

Estrogen receptor (ER)  
   Negative 
   Positive

24 (11) 
190 (89)

93 (41) 
132 (59)

50.9 
(<0.0001)

75 (23) 
256 (77)

42 (39) 
66 (61)

10.9 
(0.001)

Progesterone receptor 
(PR) 
   Negative 
   Positive

65 (30) 
149 (70)

121 (54) 
103 (46) 25.0 

(<0.0001)

127 (38) 
203 (62)

59 (55) 
49 (45) 8.7 

(0.003)

HER2 status * 
   Negative 
   Positive

164 (81) 
38 (19)

156 (69) 
70 (31)

8.4 
(0.004)

245 (77) 
75 (23)

75 (69) 
33 (31)

2.2 
(0.141)

Surgical Management 
   Mastectomy 
   BCS 

130 (56) 
104 (44)

142 (58) 
105 (42)

0.2 
(0.669) 204 (57) 

156 (43)
68 (56) 
53 (44)

0.1 
(0.928)

Radiotherapy (RT) **  
   Yes  
   No

29 (28) 
75 (72)

42 (40) 
63 (60)

3.5 
(0.04) 43 (28) 

113 (72)
28 (53) 
25 (47)

11.3 
(0.001)

Molecular classes 
   Luminal/HER2– 
   Luminal/HER2+ 
   ER-/HER2+ 
   Triple negative

147 (76) 
24 (12) 
11 (6) 
11 (6)

98 (47) 
28 (13) 
36 (17) 
48 (23)

45.9 
(<0.0001)

198 (65) 
37 (12) 
33 (11) 
37 (12)

47 (48) 
15 (15) 
14 (14) 
22 (23)

10.2 
(0.017)

HIF1-a expression 
   High 
   Low 

24 (15) 
141 (85)

132 (66) 
68 (34)

18.1 
(<0.0001)

58 (21) 
213 (79)

34 (36) 
60 (64)

8.1 
(0.004)

I p s i l a t e r a l l o c a l 
recurrence  
   Yes 
   No 

17 (7) 
217 (93)

39 (16) 
208 (84)

8.5 
(0.004)

47 (13) 
313 (87)

9 (8) 
112 (92)

2.8 
(0.100)

DCIS Type*** 
   Pure DCIS 
   DCIS with IBC

234 (77) 
71 (23)

247 (66) 
125 (34)

8.6 
(0.003)

360 (79) 
98 (21)

121 (55) 
98 (45)

39.3 
(<0.0001)
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Table 2: Multivariate survival analysis (Cox regression model) of variables predicting 
outcome in terms of ipsilateral local recurrence in patients treated by breast conserving 
surgery in pure DCIS cohort  

significant p values are in bold  
P4HA2; prolyl-4-hydroxlase alpha subunit 2, DCIS; ductal carcinoma in situ. 

Parameters  Hazard ratio 
(HR)

95.0% confidence 
interval (CI)

Significance 
p-value

Lower Upper

High P4HA2 expression 3.1 1.5 6.3 0.002

Patient Age 0.6 0.2 1.5 0.286

DCIS presentation 1.5 0.7 2.9 0.278

DCIS size 1.3 0.7 2.5 0.437

DCIS nuclear Grade 1.3 0.7 2.3 0.373

Comedo necrosis 1.1 0.5 2.1 0.895

Molecular classes 0.8 0.5 1.1 0.170

Radiotherapy 0.3 0.1 0.8 0.015

Margin status 0.8 0.5 1.4 0.510
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Table 1: Clinicopathological parameters of the pure DCIS cohort*. The 
whole primary cohort including 776 cases and the final cohort including 481 cases after 
P4HA2 scoring are shown.   

Parameters

Whole cohort 
N=776 cases 

N (%)

Final cohort 
N=481 cases 

N (%)

Mean patient age (years ± SD) 57 ± 9 (range 28-86) 57 ± 10 (range 28-86)

Mean DCIS size (mm ± SD) 30 ± 26 (range 1-180) 35 ± 28 (range 1-180)

Patient age 
   ≤45 years 
   >45 years

78 (10) 
698 (90)

58 (11) 
423 (89)

DCIS Presentation 
   Screening 
   Symptomatic

421 (54) 
355 (46)

238 (50) 
243 (50)

DCIS Size 
   ≤20mm 
   >20mm 
   N/A

382 (49) 
386 (50) 
7 (1)

204 (42) 
274 (57) 
3 (1)

DCIS Nuclear Grade 
   Low 
   Moderate 
   High

102 (13) 
192 (25) 
482 (62)

61 (13) 
125 (26) 
295 (61)

Comedo necrosis 
   Yes 
   No

497 (64)  
279 (36)

321 (67) 
160 (33)

Surgical Management 
   Breast conserving surgery (BCS)  
   Mastectomy

375 (48) 
401 (52)

209 (44) 
272 (56)

Final Margin Status** 
   Positive (Tumour on ink) 
   <2mm 
   ≥2mm 
   Unknown

9 (2) 
11 (3) 
326 (87) 
29 (8)

6 (3) 
8 (4) 
179 (86) 
16 (7)

Radiotherapy (RT)** 
   No 
   Yes

265 (71) 
110 (29)

138 (66) 
71 (34)

Estrogen receptor (ER) status  
   Negative 
   Positive 
   N/A

148 (19) 
439 (57) 
189 (24)

117 (24) 
322 (67) 
42 (9)

Progesterone receptor (PR) status 
   Negative 
   Positive 
   N/A

248 (32) 
336 (43) 
192 (25)

186 (39) 
252 (52) 
43 (9)

HER2 status***  
   Negative 
   Positive 
   N/A

496 (64) 
133 (17) 
147 (19)

320 (67) 
108 (22) 
53 (11)
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P4HA2; prolyl-4-hydroxlase alpha subunit 2, DCIS; ductal carcinoma in situ, HER2; Human epidermal growth 
factor receptor 2, BCS; breast conserving surgery, HIF1-a; hypoxia inducible factor 1 alpha.   
*Mixed DCIS-IBC cohort included 239 patients with mean age 53±9 years, 155 cases (64%) had extensive 
DCIS, 167 cases (69%) were of high nuclear grade and comedo type necrosis was seen in 175 cases (73%). 
**For patients treated with breast conserving surgery  
***HER2 final status is achieved using combination of IHC and chromogenic in situ hybridisation (CISH). 

Molecular classes 
   Luminal/HER2– 
   Luminal/HER2+ 
   ER-/HER2+ 
   Triple negative 
   N/A

335 (43) 
60 (8) 
51 (7) 
80 (10) 
250 (32)

245 (51) 
52 (11) 
47 (10) 
59 (12) 
78 (16)

HIF1-α expression 
   High 
   Low 
   N/A

105 (14) 
364 (47) 
307 (39)

92 (19) 
273 (57) 
116 (24)

Recurrence 
   DCIS recurrence 
   Invasive recurrence

30 (36) 
53 (64)

22 (39) 
34 (61)
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Supplementary Table 2: Correlation between P4HA2 expression in DCIS malignant 
epithelial cells and stromal fibroblasts with different clinicopathological parameters in the 
pure DCIS cohort using continuous data.  

significant p values are in bold  
P4HA2; prolyl-4-hydroxlase alpha subunit 2, DCIS; ductal carcinoma in situ, HER2; Human epidermal growth 
factor receptor 2, BCS; breast conserving surgery, IBC; invasive breast cancer, HIF1-a; hypoxia inducible factor 
1 alpha.   
*HER2 final status is achieved using combination of IHC and chromogenic in situ hybridisation (CISH). 
**For patients treated with breast conserving surgery.  

Parameters Number of 
cases

P4HA2 expression in tumour 
epithelial cells (H-score)

P 4 H A 2 e x p r e s s i o n i n 
stromal fibroblasts (%)

Mean Rank p-value Mean Rank p-value

Patient Age 
   ≤45 years 
   >45 years

58 
423

286.0 
234.8

 0.008 288.3 
234.5

0.005

DCIS Presentation  
   Screening 
   Symptomatic

238 
243

227.8 
253.9

0.038 222.1 
259.5

0.003

DCIS Size 
   ≤20mm 
   >20mm

204 
274

227.5 
248.5

0.098 228.7 
247.5

0.136

DCIS Nuclear Grade 
   Low 
   Moderate 
   High

61 
125 
295

145.1 
217.9 
270.6

 <0.0001
201.5 
219.5 
258.3

0.002

Comedo necrosis  
   Yes 
   No

321 
160

263.1 
196.7  <0.0001

258.3 
206.2  <0.0001

Estrogen receptor (ER)  
   Negative 
   Positive

117 
322

290.2 
194.5

 <0.0001 263.3 
204.3

 <0.0001

Progesterone Receptor (PR) 
   Negative 
   Positive

186 
252

258.2 
190.9

<0.0001 248.8 
197.8

<0.0001

HER2 status* 
   Negative 
   Positive

320 
108

200.9 
254.6

 <0.0001 205.7 
240.5

0.011

Radiotherapy (RT) **  
   Yes  
   NO

71 
138

123.3 
95.6

0.002 125.5 
94.4

0.0003

Treatment Group  
   Mastectomy 
   BCS 

272 
209

249.3 
230.2

0.134 242.9 
238.2

0.725

Molecular classes 
   Luminal/HER2– 
   Luminal/HER2+ 
   ER-/HER2+ 
   Triple negative

245 
52 
47 
59

170.8 
219.2 
268.9 
263.2

 <0.0001

183.7 
209.6 
243.8 
238.4

 <0.0001

HIF1-a expression 
   High 
   Low 

92 
273

233.4 
166.0  <0.0001 223.3 

169.4  <0.0001

DCIS Type 
   Pure DCIS 
   DCIS with IBC

481 
196

325.8 
371.4

0.006 302.3 
429.0

 <0.0001
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Supplementary Table 3: Correlation between P4HA2 mRNA level and the 
clinicopathologic parameters in the METABRIC series of invasive breast cancers 
(n=1980). 

significant p values are in bold  
 METABRIC:   Molecular Taxonomy of Breast Cancer International Consortium 

Parameter Number o f 
cases

Mean P4HA2 
mRNA level

p-value

Patient Age 
   <50 years 
   ≥50 years

383 
1556

8.3 
8.3

0.336

Tumour Size 
   ≤20 mm 
   >20 mm

622 
1331

8.3 
8.3

0.535

Histologic Grade 
   1 
   2  
   3

170 
770 
952

8.2 
8.2 
8.3

0.034

Lymph node metastasis  
   Negative 
   Positive

1035 
938

8.2 
8.3

0.028

Oestrogen Receptor (ER) Status 
   Positive 
   Negative

1506 
474

8.2 
8.4

0.0001

HER2 Status 
   Negative 
   Positive

1733 
247

8.2 
8.5

<0.0001

PAM50 molecular classes 
   Luminal A 
   Luminal B 
   Basal-like 
   HER2 enriched 
   Normal like

718 
488 
329 
240 
199

8.2 
8.3 
8.3 
8.4 
8.2

0.005
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Supplementary Table 4: Multivariate survival analysis (Cox regression model) of 
variables predicting breast cancer specific survival in METABRIC data.  

significant p values are in bold  
METABRIC:   Molecular Taxonomy of Breast Cancer International Consortium 

Supplementary Figures  

Parameters Hazard ratio 
(HR)

95.0% confidence 
interval (CI)

Significance 
p-value

Lower Upper

High P4HA2 mRNA expression  1.3 1.1 1.5 0.007

Patient Age 1.0 0.8 1.3 0.994

Tumour Grade 1.3 1.1 1.6 0.004

Tumour Stage 2.1      1.7 2.6 0.0001

Lymph node metastasis 1.4 1.1 1.9 0.010

Molecular classes 1.1 1.1 1.2 0.028
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Supplementary Figure 1: Examples of H score around 40 for P4HA2 expression in 
DCIS tumour epithelial cells.   

#
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Supplementary Figure 2: Association between P4HA2 mRNA level and outcome in 
terms of breast cancer specific survival (BCSS) in the METABRIC series. The cohort was 
split into high and low mRNA expression based on the median (=8.28).  

&
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Supplementary Figure 3: Forest plots showing the univariate analysis results of 
association between different clinicopathological parameters and ipsilateral tumour 
recurrence for patients treated with breast conserving surgery in pure DCIS cohort; 
A) all recurrences whether DCIS or invasive and B) for invasive recurrences only. High 
expression of P4HA2 in tumour epithelial cells is associated with higher recurrence risk in 
both groups.

&
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